论文标题
用于地球物理海洋变量快速和可扩展插值的神经场
Neural Fields for Fast and Scalable Interpolation of Geophysical Ocean Variables
论文作者
论文摘要
最佳插值(OI)是一种用于地球科学中插值和重建问题的广泛使用,高度信任的算法。随着卫星任务的涌入,我们可以访问越来越多的观察结果,并且在预测和重新分析等应用中利用这些观察结果变得越来越相关。随着可用数据量的增加,可伸缩性仍然是标准OI的问题,它可以防止许多从业者有效,有效利用这些大量数据来学习模型超参数。在这项工作中,我们利用神经领域的最新进展(NERF)作为OI框架的替代方案,在该框架中,我们显示了如何轻松地将它们应用于物理海洋学中的标准重建问题。我们通过卫星高度测定法说明了NERF与海面高度(SSH)稀疏测量的相关性,并演示了NERF如何可扩展,并与标准OI相当。我们发现NERF是一组实用的方法,可以很容易地应用于地球科学插值问题,我们预计将来会有更广泛的采用。
Optimal Interpolation (OI) is a widely used, highly trusted algorithm for interpolation and reconstruction problems in geosciences. With the influx of more satellite missions, we have access to more and more observations and it is becoming more pertinent to take advantage of these observations in applications such as forecasting and reanalysis. With the increase in the volume of available data, scalability remains an issue for standard OI and it prevents many practitioners from effectively and efficiently taking advantage of these large sums of data to learn the model hyperparameters. In this work, we leverage recent advances in Neural Fields (NerFs) as an alternative to the OI framework where we show how they can be easily applied to standard reconstruction problems in physical oceanography. We illustrate the relevance of NerFs for gap-filling of sparse measurements of sea surface height (SSH) via satellite altimetry and demonstrate how NerFs are scalable with comparable results to the standard OI. We find that NerFs are a practical set of methods that can be readily applied to geoscience interpolation problems and we anticipate a wider adoption in the future.