论文标题

感知运动学习的神经主动推理模型

A Neural Active Inference Model of Perceptual-Motor Learning

论文作者

Yang, Zhizhuo, Diaz, Gabriel J., Fajen, Brett R., Bailey, Reynold, Ororbia, Alexander

论文摘要

主动推理框架(AIF)是一个以当代神经科学为基础的有希望的新计算框架,可以通过基于奖励的学习来产生类似人类的行为。在这项研究中,我们测试了AIF通过系统地研究已经过充分探索的视觉运动任务来捕获人们在人类行动视觉指导中捕获预期作用的能力,该任务是拦截目标在地面平面上移动的目标。先前的研究表明,执行此任务的人类诉诸于速度的预期变化,旨在补偿该方法后期目标速度的半预测变化。为了捕捉这种行为,我们提出的“神经” AIF药物使用人工神经网络根据对任务环境的信息的非常短期预测来选择这些动作,这些动作将揭示出这些操作以及对由此产生的累积预期自由能的长期估计。系统的变化表明,只有在限制对代理人运动能力的限制要求时才出​​现预期行为,并且只有当代理商能够在未来的足够长的持续时间内估算累积的自由能。此外,我们还提出了先前功能的新型表述,该功能将多维世界状态映射到自由能的单维分布。总之,这些结果证明了AIF用作人类预期视觉指导行为的合理模型。

The active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience that can produce human-like behavior through reward-based learning. In this study, we test the ability for the AIF to capture the role of anticipation in the visual guidance of action in humans through the systematic investigation of a visual-motor task that has been well-explored -- that of intercepting a target moving over a ground plane. Previous research demonstrated that humans performing this task resorted to anticipatory changes in speed intended to compensate for semi-predictable changes in target speed later in the approach. To capture this behavior, our proposed "neural" AIF agent uses artificial neural networks to select actions on the basis of a very short term prediction of the information about the task environment that these actions would reveal along with a long-term estimate of the resulting cumulative expected free energy. Systematic variation revealed that anticipatory behavior emerged only when required by limitations on the agent's movement capabilities, and only when the agent was able to estimate accumulated free energy over sufficiently long durations into the future. In addition, we present a novel formulation of the prior function that maps a multi-dimensional world-state to a uni-dimensional distribution of free-energy. Together, these results demonstrate the use of AIF as a plausible model of anticipatory visually guided behavior in humans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源