论文标题
城堡:通过动态词汇路由进行有条件的令牌相互作用
CITADEL: Conditional Token Interaction via Dynamic Lexical Routing for Efficient and Effective Multi-Vector Retrieval
论文作者
论文摘要
多矢量检索方法结合了稀疏(例如BM25)和致密(例如DPR)检索器的优点,并在各种检索任务上实现了最新的性能。但是,与单矢量相比,这些方法的数量级较慢,需要更多的空间来存储其索引。在本文中,我们从令牌路由的角度统一了不同的多矢量检索模型,并通过动态词汇路由(即Citadel)提出条件令牌相互作用,以进行有效有效的多向量检索。 Citadel学会将不同的令牌向量路由到预测的词汇``键'',以便查询令牌向量仅与将其连接到同一键的文档令牌向量相互作用。该设计大大降低了计算成本,同时保持高精度。值得注意的是,城堡的性能比以前的最新状态Colbert-V2在内域(MS MARCO)和室外(Beir)评估中都取得了相同的性能,同时又快了近40倍。代码和数据可在https://github.com/facebookresearch/dpr-scale上找到。
Multi-vector retrieval methods combine the merits of sparse (e.g. BM25) and dense (e.g. DPR) retrievers and have achieved state-of-the-art performance on various retrieval tasks. These methods, however, are orders of magnitude slower and need much more space to store their indices compared to their single-vector counterparts. In this paper, we unify different multi-vector retrieval models from a token routing viewpoint and propose conditional token interaction via dynamic lexical routing, namely CITADEL, for efficient and effective multi-vector retrieval. CITADEL learns to route different token vectors to the predicted lexical ``keys'' such that a query token vector only interacts with document token vectors routed to the same key. This design significantly reduces the computation cost while maintaining high accuracy. Notably, CITADEL achieves the same or slightly better performance than the previous state of the art, ColBERT-v2, on both in-domain (MS MARCO) and out-of-domain (BEIR) evaluations, while being nearly 40 times faster. Code and data are available at https://github.com/facebookresearch/dpr-scale.