论文标题

Kerr-Newman解决方案的新形式

New form of the Kerr-Newman solution

论文作者

Hobson, Michael

论文摘要

提出了一种新形式的Kerr-Newman解决方案。该解决方案涉及一个时间坐标,该时间坐标代表了从空间无穷大处释放的带电的大粒子的局部适当时间。选定的坐标确保解决方案在视野中表现得很好,并能够对许多物理现象进行直观的描述。如果粒子的费用$ e = 0 $,则将坐标降低到带有更换$ m \至m -q^2/(2r)$的Kerr解决方案的Doran坐标,其中$ m $和$ q $分别是黑洞的质量和费用。这种坐标仅适用于$ r \ ge q^2/(2m)$,但是,该区域对应于从无穷大处释放的中性粒子可以穿透的区域。相比之下,对于$ e \ neq 0 $,与$ q $相反的符号,新坐标具有逐渐扩展的有效性范围,$ | e | $增加,并且倾向于提高Eddington-finkelstein(EF)null null坐标为$ | e | \至\ infty $,因此在此限制下成为全球。还可以通过设置$ eq =-α$来编写KERR解决方案(即带有$ Q = 0 $),其中$α$是无关收费的真实参数;在这种情况下,对于所有非负值$α$的坐标系都是全局的,并且限制$α= 0 $和$α\ to \ infty $分别对应于Doran坐标和高级EF EF NULL坐标,而无需在它们之间进行任何转换。

A new form of the Kerr-Newman solution is presented. The solution involves a time coordinate which represents the local proper time for a charged massive particle released from rest at spatial infinity. The chosen coordinates ensure that the solution is well-behaved at horizons and enable an intuitive description of many physical phenomena. If the charge of the particle $e = 0$, the coordinates reduce to Doran coordinates for the Kerr solution with the replacement $M \to M - Q^2/(2r)$, where $M$ and $Q$ are the mass and charge of the black hole, respectively. Such coordinates are valid only for $r \ge Q^2/(2M)$, however, which corresponds to the region that a neutral particle released from rest at infinity can penetrate. By contrast, for $e \neq 0$ and of opposite sign to $Q$, the new coordinates have a progressively extended range of validity as $|e|$ increases and tend to advanced Eddington-Finkelstein (EF) null coordinates as $|e| \to \infty$, hence becoming global in this limit. The Kerr solution (i.e.\ with $Q=0$) may also be written in terms of the new coordinates by setting $eQ = -α$, where $α$ is a real parameter unrelated to charge; in this case the coordinate system is global for all non-negative values of $α$ and the limits $α= 0$ and $α\to \infty$ correspond to Doran coordinates and advanced EF null coordinates, respectively, without any need to transform between them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源