论文标题

基于补丁的剥离扩散概率模型,用于稀疏视图CT重建

Patch-Based Denoising Diffusion Probabilistic Model for Sparse-View CT Reconstruction

论文作者

Xia, Wenjun, Cong, Wenxiang, Wang, Ge

论文摘要

稀疏视图计算机断层扫描(CT)可用于大大减少辐射剂量,但遭受严重的图像伪像。最近,基于深度学习的稀疏视图CT重建方法引起了主要关注。但是,神经网络仅在图像域工作时,通常具有有限的删除工件的能力。基于深度学习的正式处理可以实现更好的反绘制性能,但是它不可避免地需要视频记忆中整个图像的特征图,这使得处理大规模或三维(3D)图像相当具有挑战性。在本文中,我们提出了一个基于斑块的denoing扩散概率模型(DDPM),用于稀疏视图CT重建。基于从完全采样的投影数据中提取的补丁的DDPM网络进行训练,然后用于注入绘制采样的投影数据。该网络不需要配对的全采样和下采样的数据,从而实现了无监督的学习。由于数据处理是基于补丁的,因此可以并行分发深度学习工作流程,从而克服大规模数据的内存问题。我们的实验表明,所提出的方法可以有效地抑制很少的视文,同时忠实地保留纹理细节。

Sparse-view computed tomography (CT) can be used to reduce radiation dose greatly but is suffers from severe image artifacts. Recently, the deep learning based method for sparse-view CT reconstruction has attracted a major attention. However, neural networks often have a limited ability to remove the artifacts when they only work in the image domain. Deep learning-based sinogram processing can achieve a better anti-artifact performance, but it inevitably requires feature maps of the whole image in a video memory, which makes handling large-scale or three-dimensional (3D) images rather challenging. In this paper, we propose a patch-based denoising diffusion probabilistic model (DDPM) for sparse-view CT reconstruction. A DDPM network based on patches extracted from fully sampled projection data is trained and then used to inpaint down-sampled projection data. The network does not require paired full-sampled and down-sampled data, enabling unsupervised learning. Since the data processing is patch-based, the deep learning workflow can be distributed in parallel, overcoming the memory problem of large-scale data. Our experiments show that the proposed method can effectively suppress few-view artifacts while faithfully preserving textural details.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源