论文标题

评估高能量物理中的生成模型

Evaluating generative models in high energy physics

论文作者

Kansal, Raghav, Li, Anni, Duarte, Javier, Chernyavskaya, Nadezda, Pierini, Maurizio, Orzari, Breno, Tomei, Thiago

论文摘要

在基于机器学习的生成建模的研究中,最近发生了爆炸,以应对高能量物理(HEP)模拟的计算挑战。为了在实践中使用此类替代模拟器,我们需要定义明确的指标来比较不同的生成模型并评估它们与真实分布的差异。我们使用两样本拟合优点测试的框架及其对HEP的相关性和可行性,对评估指标的首次系统审查和调查及其对生成模型的故障模式的敏感性。受到物理和计算机视觉的先前工作的启发,我们提出了两个新指标,分别是Fréchet和内核物理距离(分别为FPD和KPD),并执行了各种实验,以测量其在简单高斯分配的效果上,并模拟了高能喷射数据集。我们发现FPD特别是对测试的所有替代喷气分布的最敏感的度量,并建议采用其在单个特征分布之间的KPD和Wasserstein距离,以评估HEP中的生成模型。我们最终证明了这些提出的指标在评估和比较基于注意力的对抗性粒子变压器与最新消息传播的生成对抗性网络喷气式飞机模拟模型的功效。我们提出的指标的代码在开源JetNet Python库中提供。

There has been a recent explosion in research into machine-learning-based generative modeling to tackle computational challenges for simulations in high energy physics (HEP). In order to use such alternative simulators in practice, we need well-defined metrics to compare different generative models and evaluate their discrepancy from the true distributions. We present the first systematic review and investigation into evaluation metrics and their sensitivity to failure modes of generative models, using the framework of two-sample goodness-of-fit testing, and their relevance and viability for HEP. Inspired by previous work in both physics and computer vision, we propose two new metrics, the Fréchet and kernel physics distances (FPD and KPD, respectively), and perform a variety of experiments measuring their performance on simple Gaussian-distributed, and simulated high energy jet datasets. We find FPD, in particular, to be the most sensitive metric to all alternative jet distributions tested and recommend its adoption, along with the KPD and Wasserstein distances between individual feature distributions, for evaluating generative models in HEP. We finally demonstrate the efficacy of these proposed metrics in evaluating and comparing a novel attention-based generative adversarial particle transformer to the state-of-the-art message-passing generative adversarial network jet simulation model. The code for our proposed metrics is provided in the open source JetNet Python library.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源