论文标题
在期望较弱的空间中的barycentric分解
Barycentric decompositions in the space of weak expectations
论文作者
论文摘要
对于(UNITAL)可分离的C* - 代数的给定表示的弱期望空间是BW拓扑中(Unialital)完全正面图的紧凑型凸形集合,当时它是非空的。经典choquet理论的应用给出了该集合中弱期望的barycentric分解。但是,要完成Barycentric图片,需要知道相关的紧凑型凸的极端点。在本文中,我们使用运营商理论技术明确确定了给定表示形式的弱期望空间的极端点。
The space of weak expectations for a given representation of a (unital) separable C*-algebra is a compact convex set of (unital) completely positive maps in the BW topology, when it is non-empty. An application of the classical Choquet theory gives a barycentric decomposition of a weak expectation in that set. However, to complete the barycentric picture, one needs to know the extreme points of the compact convex set in question. In this article, we explicitly identify the set of extreme points of the space of weak expectations for a given representation, using operator theoretic techniques.