论文标题
美元
$L^2$-type Dolbeault isomorphisms and vanishing theorems for logarithmic sheaves twisted by multiplier ideal sheaves
论文作者
论文摘要
在本文中,我们首先建立了一个$ l^2 $ -type dolbeault同构,用于对数差分形式的捆绑形式,并由乘数理想的造纸扭曲。通过使用这种同构和配备有奇异遗产指标的$ l^2 $估计,我们获得了涉及乘数乘数的对数消失的定理,理想的滑轮是紧凑型kähler歧管,并具有简单的正常交叉分裂。
In this article, we first establish an $L^2$-type Dolbeault isomorphism for the sheaf of logarithmic differential forms twisted by the multiplier ideal sheaf. By using this isomorphism and $L^2$-estimates equipped with a singular Hermitian metric, we obtain logarithmic vanishing theorems involving multiplier ideal sheaves on compact Kähler manifolds with simple normal crossing divisors.