论文标题
可调节菌株的硅基于受体的值
Acceptor-based qubit in silicon with tunable strain
论文作者
论文摘要
长时间的连贯性时间和与半导体制造的兼容性使硅中的自旋矩形成为量子计算的有吸引力的平台。近年来,在构建高前遗性量子门时具有弱耦合到核自旋噪声和强旋转轨道耦合(SOC)的优势,因此正在开发孔自旋量子。但是,对单个受体中的孔自旋速度的研究相对较少,这仅需要金属门的低密度。特别是,仍然缺乏使用可控应变来调查柔性可调性,以使基于受体的量子台的易耐断层量子门进行调查。在这里,我们研究了具有可控应变的基于受体的孔旋转轮位的电偶极旋转共振(EDSR)的可调性。 LH-HH分裂和自旋孔耦合(SHC)与两种应变的柔性可调性可以避免在“最佳点”处避免高电场,并且可以优化受体量子的运行性能。可以获得更长的松弛时间或在低电场处的更强的EDSR耦合。此外,使用不对称应变,两个“甜点”被诱导并可能合并在一起,并形成二阶“甜点”。结果,单量操作的质量因子$ q $可以达到$ 10^{4} $,并且电场变化具有很高的公差。此外,讨论了基于偶极 - 偶极相互作用的受体零件的两分操作,以实现高保真性的两倍门。通过应变中的旋转量子量特性的可调性可以为基于自旋的量子计算提供有希望的途径。
Long coherence time and compatibility with semiconductor fabrication make spin qubits in silicon an attractive platform for quantum computing. In recent years, hole spin qubits are being developed as they have the advantages of weak coupling to nuclear spin noise and strong spin-orbit coupling (SOC), in constructing high-fidelity quantum gates. However, there are relatively few studies on the hole spin qubits in a single acceptor, which requires only low density of the metallic gates. In particular, the investigation of flexible tunability using controllable strain for fault-tolerant quantum gates of acceptor-based qubits is still lacking. Here, we study the tunability of electric dipole spin resonance (EDSR) of acceptor-based hole spin qubits with controllable strain. The flexible tunability of LH-HH splitting and spin-hole coupling (SHC) with the two kinds of strain can avoid high electric field at the "sweet spot", and the operation performance of the acceptor qubits could be optimized. Longer relaxation time or stronger EDSR coupling at low electric field can be obtained. Moreover, with asymmetric strain, two "sweet spots" are induced and may merge together, and form a second-order "sweet spot". As a result, the quality factor $Q$ can reach $10^{4}$ for single-qubit operation, with high tolerance for the electric field variation. Furthermore, the two-qubit operation of acceptor qubits based on dipole-dipole interaction is discussed for high-fidelity two-qubit gates. The tunability of spin qubit properties in acceptor via strain could provide promising routes for spin-based quantum computing.