论文标题

来自近似植物模型的简单数字控制

Simple Digital Controls from Approximate Plant Models

论文作者

Kennedy, Hugh Lachlan

论文摘要

在本教程中考虑了设计低阶工厂(即过程)模型的低阶离散时间(即数字)控件的两种方法。第一种多项式方法找到了将闭环反馈系统的极点放置在ADROIT控制的指定位置上的控制器系数,即,当植物模型已知的快速和压缩的瞬态响应。最终控制器的极点和零是未约束的,尽管可以在控制器结构中包含积分器,以作为将稳态误差驱动到零的特殊情况。第二个频率方法可确保反馈系统在指定的增益交叉频率(对于所需的带宽)中具有所需的相边缘,从而相对于植物模型的不确定性产生稳健的稳定性。控制器的极点处于指定位置,例如对于标准比例综合(PI),比例衍生(PD),比例综合衍生物(PID),结构或其他更通用的配置(如有必要),并且为控制器零解决了问题。所得闭环反馈系统的极点和零是不受限制的。这些互补的设计程序允许使用矩阵逆操作从植物模型中分析得出简单有效的控件,以求解一小部分线性同时方程,以替代更多的启发式(例如,试用和错误)或经验性PID-tonuning方法。用于泛型Zoom摄像头安装的方位角控制器被用作说明性示例。讨论了两个程序都可以使用两个程序来设计控制和鲁棒性之间达到所需平衡的控制方式。

Two ways of designing low-order discrete-time (i.e. digital) controls for low-order plant (i.e. process) models are considered in this tutorial. The first polynomial method finds the controller coefficients that place the poles of the closed-loop feedback system at specified positions for adroit controls, i.e. for a rapid and compressed transient response, when the plant model is known precisely. The poles and zeros of the resulting controller are unconstrainted, although an integrator may be included in the controller structure as a special case to drive steady-state errors towards zero. The second frequency method ensures that the feedback system has the desired phase-margin at a specified gain cross-over frequency (for the desired bandwidth) yielding robust stability with respect to plant model uncertainty. The poles of the controller are at specified positions, e.g. for a standard Proportional-Integral (PI), Proportional-Derivative (PD), Proportional-Integral-Derivative (PID), structure or other more general configurations if necessary, and the problem is solved for the controller zeros. The poles and zeros of the resulting closed-loop feedback system are unconstrained. These complementary design procedures allow simple and effective controls to be derived analytically from a plant model, using a matrix inverse operation to solve a small set of linear simultaneous equations, as an alternative to more heuristic (e.g. trial-and-error) or empirical PID-tuning approaches. An azimuth controller for a pan-tilt-zoom camera mount is used as an illustrative example. The ways in which both procedures may be used to design controls with the desired balance between adroitness and robustness are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源