论文标题
PROTSI:具有数据增强的原型暹罗网络,可用于几次主观答案评估
ProtSi: Prototypical Siamese Network with Data Augmentation for Few-Shot Subjective Answer Evaluation
论文作者
论文摘要
主观答案评估是一项耗时且繁琐的任务,评估的质量受到各种主观个人特征的严重影响。取而代之的是,机器评估可以有效地帮助教育工作者节省时间,同时还可以确保评估是公平和现实的。但是,通常使用常规机器学习和自然语言处理技术的大多数现有方法通常会因缺乏带注释的答案和模型可解释性差而阻碍,从而使它们不适合现实世界使用。为了解决这些挑战,我们提出了Protsi Network,这是一种独特的半监督架构,首次使用很少的学习来进行主观答案评估。为了通过相似性原型评估学生的答案,Protsi网络通过将暹罗网络与由Bert和编码层与原型网络组成的暹罗网络相结合来模拟评估者评分答案的自然过程。我们采用了无监督的多元化释义模型,以防止过度适应有效的文本分类。通过整合对比度学习,可以减轻歧视性文本问题。 Kaggle短评分数据集上的实验表明,在准确性和二次加权Kappa方面,Protsi网络的表现优于最新的基线模型。
Subjective answer evaluation is a time-consuming and tedious task, and the quality of the evaluation is heavily influenced by a variety of subjective personal characteristics. Instead, machine evaluation can effectively assist educators in saving time while also ensuring that evaluations are fair and realistic. However, most existing methods using regular machine learning and natural language processing techniques are generally hampered by a lack of annotated answers and poor model interpretability, making them unsuitable for real-world use. To solve these challenges, we propose ProtSi Network, a unique semi-supervised architecture that for the first time uses few-shot learning to subjective answer evaluation. To evaluate students' answers by similarity prototypes, ProtSi Network simulates the natural process of evaluator scoring answers by combining Siamese Network which consists of BERT and encoder layers with Prototypical Network. We employed an unsupervised diverse paraphrasing model ProtAugment, in order to prevent overfitting for effective few-shot text classification. By integrating contrastive learning, the discriminative text issue can be mitigated. Experiments on the Kaggle Short Scoring Dataset demonstrate that the ProtSi Network outperforms the most recent baseline models in terms of accuracy and quadratic weighted kappa.