论文标题

通过最大程度地减少过度关注区,从

Tightening Robustness Verification of MaxPool-based Neural Networks via Minimizing the Over-Approximation Zone

论文作者

Xiao, Yuan, Chen, Yuchen, Ma, Shiqing, Fang, Chunrong, Bai, Tongtong, Gu, Mingzheng, Cheng, Yuxin, Chen, Yanwei, Chen, Zhenyu

论文摘要

神经网络分类器的鲁棒性在安全 - 关键领域很重要,可以通过稳健性验证来量化。目前,有效且可扩展的验证技术总是合理的,但不完整,因此,改善验证的鲁棒性结果是评估不完整验证方法的性能的关键标准。多变量函数Maxpool被广泛采用,但要验证。在本文中,我们提出了Ti-lin,这是一种具有紧密线性近似的Maxpool CNN的鲁棒性验证器。遵循最小化CNN的非线性函数的过度透明度区域的续集,我们是第一个为Maxpool函数提出可证明神经元的最紧密的线性边界的人。根据我们提出的线性边界,我们可以证明CNN的更大鲁棒性结果。我们评估了Ti-lin对具有开源基准的不同验证框架的有效性,包括在MNIST,CIFAR-10,TINY IMATENET和MODELNET40数据集中训练的Lenet,PointNet和网络。实验结果表明,Ti-lin在所有网络上的最先进方法显着优于,其认证准确性提高了78.6%,其时间几乎与最快的工具相同。我们的代码可在https://github.com/xiaoyuanpigo/ti-lin-hybrid-lin上找到。

The robustness of neural network classifiers is important in the safety-critical domain and can be quantified by robustness verification. At present, efficient and scalable verification techniques are always sound but incomplete, and thus, the improvement of verified robustness results is the key criterion to evaluate the performance of incomplete verification approaches. The multi-variate function MaxPool is widely adopted yet challenging to verify. In this paper, we present Ti-Lin, a robustness verifier for MaxPool-based CNNs with Tight Linear Approximation. Following the sequel of minimizing the over-approximation zone of the non-linear function of CNNs, we are the first to propose the provably neuron-wise tightest linear bounds for the MaxPool function. By our proposed linear bounds, we can certify larger robustness results for CNNs. We evaluate the effectiveness of Ti-Lin on different verification frameworks with open-sourced benchmarks, including LeNet, PointNet, and networks trained on the MNIST, CIFAR-10, Tiny ImageNet and ModelNet40 datasets. Experimental results show that Ti-Lin significantly outperforms the state-of-the-art methods across all networks with up to 78.6% improvement in terms of the certified accuracy with almost the same time consumption as the fastest tool. Our code is available at https://github.com/xiaoyuanpigo/Ti-Lin-Hybrid-Lin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源