论文标题
SE(3) - 与神经描述符领域的关系重排
SE(3)-Equivariant Relational Rearrangement with Neural Descriptor Fields
论文作者
论文摘要
我们提出了一种执行任务的方法,该任务涉及以任意姿势初始化的新颖对象实例之间的空间关系,直接从点云观测值。我们的框架提供了一种仅使用5-10个演示的新任务来指定新任务的可扩展方法。对象重排被形式化为查找在所需对齐中配置对象的与任务相关部分的动作的问题。这种形式主义分为三个步骤:为与任务相关的对象部分分配一致的局部坐标框架,确定该坐标框架在看不见的对象实例上的位置和方向,并执行将这些框架带入所需对齐的操作。我们通过开发基于神经描述符字段(NDFS)和单个注释的3D关键点来确定与几个演示中的任务相关的本地坐标框架的关键技术挑战。一种基于能量的学习计划,以建模满足所需关系任务的对象的联合配置进一步提高绩效。该方法在模拟和真实机器人中的三个多对象重排任务上进行了测试。项目网站,视频和代码:https://anthonysimeonov.github.io/r-ndf/
We present a method for performing tasks involving spatial relations between novel object instances initialized in arbitrary poses directly from point cloud observations. Our framework provides a scalable way for specifying new tasks using only 5-10 demonstrations. Object rearrangement is formalized as the question of finding actions that configure task-relevant parts of the object in a desired alignment. This formalism is implemented in three steps: assigning a consistent local coordinate frame to the task-relevant object parts, determining the location and orientation of this coordinate frame on unseen object instances, and executing an action that brings these frames into the desired alignment. We overcome the key technical challenge of determining task-relevant local coordinate frames from a few demonstrations by developing an optimization method based on Neural Descriptor Fields (NDFs) and a single annotated 3D keypoint. An energy-based learning scheme to model the joint configuration of the objects that satisfies a desired relational task further improves performance. The method is tested on three multi-object rearrangement tasks in simulation and on a real robot. Project website, videos, and code: https://anthonysimeonov.github.io/r-ndf/