论文标题

使用MFCC功能和基于双流注意力网络从心脏声音信号中检测心脏异常异常

Heart Abnormality Detection from Heart Sound Signals using MFCC Feature and Dual Stream Attention Based Network

论文作者

Rashid, Nayeeb, Saha, Swapnil, Subah, Mohseu Rashid, Robin, Rizwan Ahmed, Fahim, Syed Mortuza Hasan, Ahmed, Shahed, Mahmud, Talha Ibn

论文摘要

心血管疾病是当今世界的主要死亡原因之一,对心脏病的早期筛查在防止它们方面起着至关重要的作用。心脏声信号是心脏病的主要指标之一,可用于检测心脏异常。心脏声音信号的获取无创,具有成本效益,需要最低设备。但是目前,心脏声信号对心脏异常的检测很大程度上取决于医生的专业知识和经验。因此,对于居住在欠发达地区的人们来说,从心脏声音信号中进行心脏异常检测的自动检测系统可能是一项很好的资产。在本文中,我们提出了一个新型的基于深度学习的双流网络,其注意力机制既利用原始心脏声音信号,又使用MFCC功能来检测患者心脏状况的异常。深神经网络具有卷积流,该卷积流使用原始的心脏声音信号和使用信号的MFCC特征的经常性流。这两个流的功能使用新颖的注意网络合并在一起,并通过分类网络。该模型对PCG信号的最大公开数据集进行了训练,并实现了87.11的精度,灵敏度为82.41,特异性为91.8,MACC为87.12。

Cardiovascular diseases are one of the leading cause of death in today's world and early screening of heart condition plays a crucial role in preventing them. The heart sound signal is one of the primary indicator of heart condition and can be used to detect abnormality in the heart. The acquisition of heart sound signal is non-invasive, cost effective and requires minimum equipment. But currently the detection of heart abnormality from heart sound signal depends largely on the expertise and experience of the physician. As such an automatic detection system for heart abnormality detection from heart sound signal can be a great asset for the people living in underdeveloped areas. In this paper we propose a novel deep learning based dual stream network with attention mechanism that uses both the raw heart sound signal and the MFCC features to detect abnormality in heart condition of a patient. The deep neural network has a convolutional stream that uses the raw heart sound signal and a recurrent stream that uses the MFCC features of the signal. The features from these two streams are merged together using a novel attention network and passed through the classification network. The model is trained on the largest publicly available dataset of PCG signal and achieves an accuracy of 87.11, sensitivity of 82.41, specificty of 91.8 and a MACC of 87.12.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源