论文标题

尺寸同质性约束基因表达编程,用于发现管程

Dimensional homogeneity constrained gene expression programming for discovering governing equations

论文作者

Ma, Wenjun, Zhang, Jun, Feng, Kaikai, Xing, Haoyun, Wen, Dongsheng

论文摘要

数据驱动的管理方程发现对于帮助我们了解内在机制并建立物理模型具有重要意义。最近,出现了许多高度创新的算法,目的是从数据(例如基于稀疏回归的方法和基于符号回归的方法)的基础方程成反比。沿着这个方向,在这项工作中提出了一种新颖的尺寸同质性约束基因表达编程(DHC-GEP)方法。 DHC-GEP同时使用基本的数学运算符和物理变量发现了功能的形式和系数,而无需预先提出的候选函数。维度同质性的限制能够有效地滤除过度拟合的方程。与原始 - GEP相比,DHC-GEP的关键优势,包括对超参数更强大,噪声水平和数据集的大小,在两项基准研究中证明了。此外,DHC-GEP被用来发现两个代表性非平衡流的未知构型关系。加利利的不变性和热力学的第二定律被施加为限制,以提高发现的本构关系的可靠性。定量和定性的比较表明,派生的构型关系比常规的伯内特方程在广泛的knudsen数字和马赫数中更准确,并且也适用于训练数据的参数空间以外的情况。

Data-driven discovery of governing equations is of great significance for helping us understand intrinsic mechanisms and build physical models. Recently, numerous highly innovative algorithms have emerged, aimed at inversely discovering the underlying governing equations from data, such as sparse regression-based methods and symbolic regression-based methods. Along this direction, a novel dimensional homogeneity constrained gene expression programming (DHC-GEP) method is proposed in this work. DHC-GEP simultaneously discovers the forms and coefficients of functions using basic mathematical operators and physical variables, without requiring pre-assumed candidate functions. The constraint of dimensional homogeneity is capable of filtering out the overfitting equations effectively. The key advantages of DHC-GEP compared to Original-GEP, including being more robust to hyperparameters, the noise level and the size of datasets, are demonstrated on two benchmark studies. Furthermore, DHC-GEP is employed to discover the unknown constitutive relations of two representative non-equilibrium flows. Galilean invariance and the second law of thermodynamics are imposed as constraints to enhance the reliability of the discovered constitutive relations. Comparisons, both quantitative and qualitative, indicate that the derived constitutive relations are more accurate than the conventional Burnett equations in a wide range of Knudsen number and Mach number, and are also applicable to the cases beyond the parameter space of the training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源