论文标题
自适应减少多尺度问题和大规模PDE受限优化的基础方法
Adaptive Reduced Basis Methods for Multiscale Problems and Large-scale PDE-constrained Optimization
论文作者
论文摘要
本文提出了模型订购降低方法的最新进展,其主要目的是构建在线效率减少的替代模型,以进行参数化的多尺度现象,并加速大规模PDE PDE约束参数优化方法。特别是,我们提出了几种不同的自适应RB方法,这些方法可在错误感知到的信任区域框架中使用,用于在经过认证的外部优化循环中逐步构建使用的替代模型。此外,我们详细介绍了几种不同的增强功能,以减少信任区域(TR-RB)算法,并将其概括为参数约束。得益于减少模型的后验误差估计,可以将所得算法视为相对于高保真模型的认证。此外,我们使用首先优化的方法,然后使用饮食方法,以最大程度地利用问题的基础最佳系统。在本文的第一部分中,该理论基于全局RB技术,该技术将准确的FEM离散化作为高保真模型。在第二部分中,我们专注于局部模型降低方法,并为局部正交分解(LOD)多尺度方法开发新的在线有效降低模型。还原模型在内部基于LOD的两尺度公式,尤其是与LOD的粗略离散化无关。本文的最后一部分致力于将两个结果和LOD的局部RB方法结合起来。为此,我们提出了一种算法,该算法在信任区域局部减少基础(TR-LRB)算法的框架中使用自适应局部减少基础方法。遵循TR-RB的基本思想,但完全避免了对涉及系统的FEM评估。
This thesis presents recent advances in model order reduction methods with the primary aim to construct online-efficient reduced surrogate models for parameterized multiscale phenomena and accelerate large-scale PDE-constrained parameter optimization methods. In particular, we present several different adaptive RB approaches that can be used in an error-aware trust-region framework for progressive construction of a surrogate model used during a certified outer optimization loop. In addition, we elaborate on several different enhancements for the trust-region reduced basis (TR-RB) algorithm and generalize it for parameter constraints. Thanks to the a posteriori error estimation of the reduced model, the resulting algorithm can be considered certified with respect to the high-fidelity model. Moreover, we use the first-optimize-then-discretize approach in order to take maximum advantage of the underlying optimality system of the problem. In the first part of this thesis, the theory is based on global RB techniques that use an accurate FEM discretization as the high-fidelity model. In the second part, we focus on localized model order reduction methods and develop a novel online efficient reduced model for the localized orthogonal decomposition (LOD) multiscale method. The reduced model is internally based on a two-scale formulation of the LOD and, in particular, is independent of the coarse and fine discretization of the LOD. The last part of this thesis is devoted to combining both results on TR-RB methods and localized RB approaches for the LOD. To this end, we present an algorithm that uses adaptive localized reduced basis methods in the framework of a trust-region localized reduced basis (TR-LRB) algorithm. The basic ideas from the TR-RB are followed, but FEM evaluations of the involved systems are entirely avoided.