论文标题

与偶尔结合约束的协整

Cointegration with Occasionally Binding Constraints

论文作者

Duffy, James A., Mavroeidis, Sophocles, Wycherley, Sam

论文摘要

在有关非线性协整的文献中,一个长期存在的开放问题与(非线性)向量自动追溯(非线性矢量自动进程)如何在时间序列的矢量中提供统一的描述,可以产生“非线性协调性”,从而以这些系列共享常见的非线性定位趋势的深刻意义。我们在审查和扭结的结构VAR(CKSVAR)的设置中考虑了这个问题,该问题提供了一个灵活但可拖动的框架,其中模型时间序列均受到阈值型非线性的影响,例如由于偶尔而产生的约束约束,因此在短期较低(ZLB(ZLB)上)在短期的名义示例上提供了领先的示例。我们提供了如何通过单位根和通常的等级条件的适当概括来产生常见的线性和非线性随机趋势的完整表征,从而为Granger-Johansen代表定理提供了第一个扩展,从而为非线性协调的设置提供了第一个成功治疗开放问题。有限的共同趋势过程包括受调节的,审查和扭结的布朗尼动作,这些动作以前尚未出现在协同成立的文献中。我们的结果和运行示例表明,CKSVAR能够支持与线性VAR相比,以可能对结构参数识别特别有用的方式来支持多种多样的长期行为。

In the literature on nonlinear cointegration, a long-standing open problem relates to how a (nonlinear) vector autoregression, which provides a unified description of the short- and long-run dynamics of a vector of time series, can generate 'nonlinear cointegration' in the profound sense of those series sharing common nonlinear stochastic trends. We consider this problem in the setting of the censored and kinked structural VAR (CKSVAR), which provides a flexible yet tractable framework within which to model time series that are subject to threshold-type nonlinearities, such as those arising due to occasionally binding constraints, of which the zero lower bound (ZLB) on short-term nominal interest rates provides a leading example. We provide a complete characterisation of how common linear and nonlinear stochastic trends may be generated in this model, via unit roots and appropriate generalisations of the usual rank conditions, providing the first extension to date of the Granger-Johansen representation theorem to a nonlinearly cointegrated setting, and thereby giving the first successful treatment of the open problem. The limiting common trend processes include regulated, censored and kinked Brownian motions, none of which have previously appeared in the literature on cointegrated VARs. Our results and running examples illustrate that the CKSVAR is capable of supporting a far richer variety of long-run behaviour than is a linear VAR, in ways that may be particularly useful for the identification of structural parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源