论文标题

使用深度学习的实时地震监测:关于土耳其地震余震序列的案例研究

Real-time Earthquake Monitoring using Deep Learning: a case study on Turkey Earthquake Aftershock Sequence

论文作者

Li, Wei, Koehler, Jonas, Chakraborty, Megha, Quinteros-Cartaya, Claudia, Ruempker, Georg, Srivastava, Nishtha

论文摘要

地震相拾取和幅度估计是实时地震监测和地震预警系统的重要组成部分。可靠的相拾取可以及时检测地震波到达,促进快速地震表征和预警警报。准确的幅度估计提供了有关地震大小和潜在影响的重要信息。这些步骤共同有助于有效的地震监测,增强了我们在地震活跃地区实施适当响应措施并减轻风险的能力。在这项研究中,我们探讨了实时地震监测深度学习的潜力。为此,我们首先引入Dynapicker,该Dynapicker利用动态卷积神经网络来检测地震体波阶段。随后,Dynapicker被聘用在连续的地震记录上进行地震阶段。为了展示Dynapicker的功效,使用了几个开源地震数据集,包括窗口格式数据和连续的地震数据,用于地震相识别和到达时间选择。此外,测试了Dynapicker在对地震阶段进行分类的鲁棒性,对噪声污染的低幅度地震数据进行了测试。最后,将阶段到达时间信息集成到先前发表的深度学习模型中,以进行大小估计。然后,在土耳其地震后的余震序列的连续记录中应用和测试了此工作流程,以检测地震,地震相拾取并估算相应事件的大小。在这种案例研究中获得的结果在检测地震和估计土耳其地震后余震的大小方面具有很高的可靠性。

Seismic phase picking and magnitude estimation are essential components of real time earthquake monitoring and earthquake early warning systems. Reliable phase picking enables the timely detection of seismic wave arrivals, facilitating rapid earthquake characterization and early warning alerts. Accurate magnitude estimation provides crucial information about the size of an earthquake and potential impact. Together, these steps contribute to effective earthquake monitoring, enhancing our ability to implement appropriate response measures in seismically active regions and mitigate risks. In this study, we explore the potential of deep learning in real time earthquake monitoring. To that aim, we begin by introducing DynaPicker which leverages dynamic convolutional neural networks to detect seismic body wave phases. Subsequently, DynaPicker is employed for seismic phase picking on continuous seismic recordings. To showcase the efficacy of Dynapicker, several open source seismic datasets including window format data and continuous seismic data are used for seismic phase identification, and arrival time picking. Additionally,the robustness of DynaPicker in classifying seismic phases was tested on the low magnitude seismic data polluted by noise. Finally, the phase arrival time information is integrated into a previously published deep learning model for magnitude estimation. This workflow is then applied and tested on the continuous recording of the aftershock sequences following the Turkey earthquake to detect the earthquakes, seismic phase picking and estimate the magnitude of the corresponding event. The results obtained in this case study exhibit a high level of reliability in detecting the earthquakes and estimating the magnitude of aftershocks following the Turkey earthquake.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源