论文标题
DESI传统成像调查中星系的光度红移估计
Photometric redshift estimation of galaxies in the DESI Legacy Imaging Surveys
论文作者
论文摘要
对光度红移的准确估计在实现大型调查项目的科学目标中起着至关重要的作用。模板拟合和机器学习是当前应用的两种主要方法。基于通过交叉相关的DESI传统成像调查DR9 GALAXY目录和SDSS DR16 GALAXY目录获得的训练集,使用和优化了两种方法,例如用于模板拟合方法的Eazy和用于机器学习的CATBOOST。然后,由Lamost DR7,Gama DR3和Wigglez Galaxy目录的DESI传统成像监视Galaxy目录的交叉匹配样品测试了创建的模型。此外,比较了三种机器学习方法(catboost,多层感知者和随机森林),Catboost显示出对我们案例的优越性。通过特征选择和优化模型参数,Catboost可以使用光学和红外光度信息获得更高的精度,最佳性能($ MSE = 0.0032 $,$σ_{nmad} = 0.0156 $和$ o = 0.88 $ = 0.88 $ = 0.88 $ g \ g \ l l le 24.0 $ 24.0 $ r \ r \ r \ le 23.4 $ 23.4 $ 22 $ 22 $ 22 $ 22 $ 22。但是,Eazy可以为高红移星系提供更准确的光度红移估计,尤其是超出红色的训练样本范围之外。最后,我们用Catboost和Eazy完成了所有DESI DR9星系的红移估计,这将有助于对星系及其性质的进一步研究。
The accurate estimation of photometric redshifts plays a crucial role in accomplishing science objectives of the large survey projects. The template-fitting and machine learning are the two main types of methods applied currently. Based on the training set obtained by cross-correlating the DESI Legacy Imaging Surveys DR9 galaxy catalogue and SDSS DR16 galaxy catalogue, the two kinds of methods are used and optimized, such as EAZY for template-fitting approach and CATBOOST for machine learning. Then the created models are tested by the cross-matched samples of the DESI Legacy Imaging SurveysDR9 galaxy catalogue with LAMOST DR7, GAMA DR3 and WiggleZ galaxy catalogues. Moreover three machine learning methods (CATBOOST, Multi-Layer Perceptron and Random Forest) are compared, CATBOOST shows its superiority for our case. By feature selection and optimization of model parameters, CATBOOST can obtain higher accuracy with optical and infrared photometric information, the best performance ($MSE=0.0032$, $σ_{NMAD}=0.0156$ and $O=0.88$ per cent) with $g \le 24.0$, $r \le 23.4$ and $z \le 22.5$ is achieved. But EAZY can provide more accurate photometric redshift estimation for high redshift galaxies, especially beyond the redhisft range of training sample. Finally, we finish the redshift estimation of all DESI DR9 galaxies with CATBOOST and EAZY, which will contribute to the further study of galaxies and their properties.