论文标题

二次准群的同构

Isomorphisms of quadratic quasigroups

论文作者

Drápal, Aleš, Wanless, Ian M.

论文摘要

Let $\mathbb{F}$ be a finite field of odd order and $a,b\in\mathbb{F}\setminus\{0,1\}$ be such that $χ(a) = χ(b)$ and $χ(1-a)=χ(1-b)$, where $χ$ is the extended quadratic character.令$ q_ {a,b} $为$ \ mathbb {f} $在$(x,y)\ mapsto x+a(y-x)$(y-x)\ ge 0 $ 0 $和$(x,x,x,x,y)\ mapsto x+b(y-x)$(y-x)$(y-x)$(y-x)$(y-x)$(y-x)$(y-x)$χ(y-χ(y-χ(y-百x)中),$(x,y)\ mapsto x+a(y-x)$定义为Quasigroup。我们证明$ q_ {a,b} \ cong q_ {c,d} $,并且仅当$ \ {a,b \} = \ {α(c),α(d)\} $ for in \ textrm {auttrm {aut}(aut})(\ mathbb {f})$。我们还表征了$ \ textrm {aut}(q_ {a,b})$并展示进一步的属性,包括确定$ q_ {a,b} $是steiner quasigroup或交换性,熵,距离,左或右分配或右分配,灵活,灵活或半对称性。在证明我们的结果时,我们还表征了$ q_ {a,b} $的最小子量集。

Let $\mathbb{F}$ be a finite field of odd order and $a,b\in\mathbb{F}\setminus\{0,1\}$ be such that $χ(a) = χ(b)$ and $χ(1-a)=χ(1-b)$, where $χ$ is the extended quadratic character. Let $Q_{a,b}$ be the quasigroup upon $\mathbb{F}$ defined by $(x,y)\mapsto x+a(y-x)$ if $χ(y-x) \ge 0$, and $(x,y)\mapsto x+b(y-x)$ if $χ(y-x) = -1$. We show that $Q_{a,b} \cong Q_{c,d}$ if and only if $\{a,b\}= \{α(c),α(d)\}$ for some $α\in \textrm{aut}(\mathbb{F})$. We also characterise $\textrm{aut}(Q_{a,b})$ and exhibit further properties, including establishing when $Q_{a,b}$ is a Steiner quasigroup or is commutative, entropic, left or right distributive, flexible or semisymmetric. In proving our results we also characterise the minimal subquasigroups of $Q_{a,b}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源