论文标题
部分可观测时空混沌系统的无模型预测
Planning Irregular Object Packing via Hierarchical Reinforcement Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Object packing by autonomous robots is an im-portant challenge in warehouses and logistics industry. Most conventional data-driven packing planning approaches focus on regular cuboid packing, which are usually heuristic and limit the practical use in realistic applications with everyday objects. In this paper, we propose a deep hierarchical reinforcement learning approach to simultaneously plan packing sequence and placement for irregular object packing. Specifically, the top manager network infers packing sequence from six principal view heightmaps of all objects, and then the bottom worker network receives heightmaps of the next object to predict the placement position and orientation. The two networks are trained hierarchically in a self-supervised Q-Learning framework, where the rewards are provided by the packing results based on the top height , object volume and placement stability in the box. The framework repeats sequence and placement planning iteratively until all objects have been packed into the box or no space is remained for unpacked items. We compare our approach with existing robotic packing methods for irregular objects in a physics simulator. Experiments show that our approach can pack more objects with less time cost than the state-of-the-art packing methods of irregular objects. We also implement our packing plan with a robotic manipulator to show the generalization ability in the real world.