论文标题
国家独立的非绝热几何量子门
State-independent Nonadiabatic Geometric Quantum Gates
论文作者
论文摘要
对于特殊硬性问题,量子计算与经典计算相比具有优势,其中一组通用量子门是必不可少的。对本地噪声具有内置弹性的几何阶段已被用于构建具有出色性能的量子门。但是,此优势已在以前的方案中涂抹。在这里,我们提出了一种独立于状态的非绝热几何量子门方案,该方案能够实现比以前的方法更全面的几何门,从而可以取消由任意状态积累的动态阶段。数值模拟表明,与以前的几何和动态动力学相比,我们的方案具有明显更强的栅极鲁棒性。同时,我们基于Rydberg封锁效应,使用Rydberg Atom系统对方案进行了详细的物理实施,特别是针对多标签控制相的门,这超过了所考虑误差范围内多级量子门的故障耐受性阈值。因此,我们的方案为原子系统中的耐故障量子计算提供了一种有希望的方法。
Quantum computation has demonstrated advantages over classical computation for special hard problems, where a set of universal quantum gates is essential. Geometric phases, which have built-in resilience to local noise, have been used to construct quantum gates with excellent performance. However, this advantage has been smeared in previous schemes. Here, we propose a state-independent nonadiabatic geometric quantum-gate scheme that is able to realize a more fully geometric gate than previous approaches, allowing for the cancelation of dynamical phases accumulated by an arbitrary state. Numerical simulations demonstrate that our scheme has significantly stronger gate robustness than the previous geometric and dynamical ones. Meanwhile, we give a detailed physical implementation of our scheme with the Rydberg atom system based on the Rydberg blockade effect, specifically for multiqubit control-phase gates, which exceeds the fault-tolerance threshold of multiqubit quantum gates within the considered error range. Therefore, our scheme provides a promising way for fault-tolerant quantum computation in atomic systems.