论文标题
量子交替运算符ANSATZ的参数设置启发式
A Parameter Setting Heuristic for the Quantum Alternating Operator Ansatz
论文作者
论文摘要
广泛研究了参数化量子电路以解决优化问题。一个突出的例子是量子交替的运算符ANSATZ(QAOA),一种方法源于量子近似优化算法的结构。在实践中,有效地找到高质量的参数仍然是一个重大挑战。在这项工作中,我们引入了一种经典参数设置的策略,适用于常见情况,其中不同成本值的数量仅随问题大小而多样地增长。我们策略的关键是,我们用一个可以有效地经过经典评估的参数化模型代替了QAOA的成本函数期望值步骤。该模型基于经验观察,即QAOA状态与具有相同成本的可变配置具有相同幅度的状态具有很大的重叠,我们将其定义为完美的同质性。因此,我们为QAOA定义了一个经典的同质代理,其中完美同质性准确地保持,并产生描述状态和期望值的信息。我们经典地确定该代理的高质量参数,并在QAOA中使用这些参数,这是我们标记参数设置的均质启发式的方法。我们在数值上检查了在随机图上的maxcut的这种启发式。对于$ 3 $ QAOA级别,我们很容易找到与以前全球优化方法返回的近似值匹配的参数。对于最高$ 20 $的级别,我们获得具有单调增加的参数,而使用参数传输的策略则无法与可比的经典资源收敛。这些结果表明,我们的启发式方法可能会发现与嘈杂的中间量子量子设备相互困扰的制度中的良好参数。最后,我们概述了如何将启发式方法应用于更广泛的问题。
Parameterized quantum circuits are widely studied approaches for tackling optimization problems. A prominent example is the Quantum Alternating Operator Ansatz (QAOA), an approach that builds off the structure of the Quantum Approximate Optimization Algorithm. Finding high-quality parameters efficiently for QAOA remains a major challenge in practice. In this work, we introduce a classical strategy for parameter setting, suitable for common cases in which the number of distinct cost values grows only polynomially with the problem size. The crux of our strategy is that we replace the cost function expectation value step of QAOA with a parameterized model that can be efficiently evaluated classically. This model is based on empirical observations that QAOA states have large overlaps with states where variable configurations with the same cost have the same amplitude, which we define as Perfect Homogeneity. We thus define a Classical Homogeneous Proxy for QAOA in which Perfect Homogeneity holds exactly, and which yields information describing both states and expectation values. We classically determine high-quality parameters for this proxy, and use these parameters in QAOA, an approach we label the Homogeneous Heuristic for Parameter Setting. We numerically examine this heuristic for MaxCut on random graphs. For up to $3$ QAOA levels we are easily able to find parameters that match approximation ratios returned by previous globally optimized approaches. For levels up to $20$ we obtain parameters with approximation ratios monotonically increasing with depth, while a strategy that uses parameter transfer instead fails to converge with comparable classical resources. These results suggest that our heuristic may find good parameters in regimes that are intractable with noisy intermediate-scale quantum devices. Finally, we outline how our heuristic may be applied to wider classes of problems.