论文标题
量子宇宙学的时间问题
The problem of time in quantum cosmology
论文作者
论文摘要
本文包含对量子宇宙学中时间问题的分析及其在宇宙学迷你群模型中的应用。在第一部分中,我们介绍了时间问题和理论基础。在第二部分中,我们专注于特定的MinisuperSpace Universe,经典分析并使用规范定量方法对其进行量化。选定的模型是一个扁平的FLRW宇宙,具有免费的无质量标量场和完美的流体。我们提取Wheeler-Dewitt方程,并计算其溶液。有三个动态变量可以用作时钟参数,即与完美的流体质量共轭的坐标$ t $,无质量标量场$φ$和$ v $,这是比例因子的积极力量。我们定义了三个量子理论,每个理论都基于假定先前的动力学数量为时钟。然后将此定量方法与狄拉克定量进行比较。我们发现,在每个定量过程中,协方差都被破坏,导致不等量子理论。在第三部分中,分析了每个理论的特性。每种理论的单位性是通过在允许状态上添加边界条件来实现的。需要单位性是打破量子理论中一般协方差的原因。在第四部分中,我们研究了三种理论中波函数的数值特性,特别注意奇异性分辨率以及与经典理论的其他分歧。 $ t $ -Clock理论能够解决奇异性,$φ$ -Clock理论提出了一些可以与空间无限分辨率相关联的非琐碎动力学,而$ V $ -CLOCK理论也没有显示出与经典理论的显着偏差。在最后一部分中,我们扩展了分析,以包括另一种定量方法:路径积分定量,最后,我们得出结论。
This thesis contains an analysis of the problem of time in quantum cosmology and its application to a cosmological minisuperspace model. In the first part, we introduce the problem of time and the theoretical foundations. In the second part, we focus on a specific minisuperspace universe, analyse it classically, and quantise it using the canonical quantisation method. The chosen model is a flat FLRW universe with a free massless scalar field and a perfect fluid. We extract the Wheeler--DeWitt equation, and calculate its solutions. There are three dynamical variables that may be used as clock parameters, namely a coordinate $t$ conjugated to the perfect fluid mass, the massless scalar field $φ$, and $v$, a positive power of the scale factor. We define three quantum theories, each one based on assuming one of the previous dynamical quantities as the clock. This quantisation method is then compared with the Dirac quantisation. We find that, in each quantisation procedure, covariance is broken, leading to inequivalent quantum theories. In the third part, the properties of each theory are analysed. Unitarity of each theory is implemented by adding a boundary condition on the allowed states. Requiring unitarity is what breaks general covariance in the quantum theory. In the fourth part, we study the numerical properties of the wave functions in the three theories, paying special attention to singularity resolution and other divergences from the classical theory. The $t$-clock theory is able to resolve the singularity, the $φ$-clock theory presents some non trivial dynamics that can be associated with a resolution of spatial infinity, and the $v$-clock theory does not show significant deviations from the classical theory. In the last part, we expand our analysis in order to include another quantisation method: path integral quantisation, and finally, we conclude.