论文标题

挤压微型滴头:卷积神经网络,具有可训练和可调的细化

Squeeze flow of micro-droplets: convolutional neural network with trainable and tunable refinement

论文作者

Mehboudi, Aryan, Singhal, Shrawan, Sreenivasan, S. V.

论文摘要

我们提出了一个基于神经网络的平台,以在微滴滴的挤压流动中解决图像到图像翻译问题。在本文的第一部分中,我们介绍了管理部分微分方程,以列出问题的基本物理。我们还讨论了我们开发的Python软件包SQFlow,该软件包可以在机器学习和计算机视觉的领域中作为免费,灵活和可扩展的标准化基准。在本文的第二部分中,我们介绍了一个残留的卷积神经网络来解决相应的反问题:将具有特定液体膜厚度的高分辨率(HR)烙印图像转换为低分辨率(LR)液滴图像,能够产生给定的印象图像,以产生给定的液滴分布时间。我们提出了一种神经网络体系结构,该架构通过使用经过训练以映射给定输入参数(膜厚度)为适当的改进水平指示器的函数近似器,以系统地研究其残留卷积块的完善水平。我们使用多个卷积层的堆栈,该输出根据直接连接函数近似器提供的改进水平指标进行翻译。与非线性激活函数一起,这种翻译机制使HR烙印图像可以按多个步骤顺序完善,直到揭示了目标LR液滴图像。所提出的平台可以可能应用于数据压缩和数据加密。已开发的软件包和数据集可在https://github.com/sqflow/sqflow上在GitHub上公开提供。

We propose a platform based on neural networks to solve the image-to-image translation problem in the context of squeeze flow of micro-droplets. In the first part of this paper, we present the governing partial differential equations to lay out the underlying physics of the problem. We also discuss our developed Python package, sqflow, which can potentially serve as free, flexible, and scalable standardized benchmarks in the fields of machine learning and computer vision. In the second part of this paper, we introduce a residual convolutional neural network to solve the corresponding inverse problem: to translate a high-resolution (HR) imprint image with a specific liquid film thickness to a low-resolution (LR) droplet pattern image capable of producing the given imprint image for an appropriate spread time of droplets. We propose a neural network architecture that learns to systematically tune the refinement level of its residual convolutional blocks by using the function approximators that are trained to map a given input parameter (film thickness) to an appropriate refinement level indicator. We use multiple stacks of convolutional layers the output of which is translated according to the refinement level indicators provided by the directly-connected function approximators. Together with a non-linear activation function, such a translation mechanism enables the HR imprint image to be refined sequentially in multiple steps until the target LR droplet pattern image is revealed. The proposed platform can be potentially applied to data compression and data encryption. The developed package and datasets are publicly available on GitHub at https://github.com/sqflow/sqflow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源