论文标题
增强物理信息的神经网络(APINNS):基于门控网络的软域分解方法
Augmented Physics-Informed Neural Networks (APINNs): A gating network-based soft domain decomposition methodology
论文作者
论文摘要
在本文中,我们提出了增强物理信息的神经网络(APINN),该网络采用软域的分解和柔性参数共享,以进一步改善扩展的Pinn(XPINN)以及Vanilla Pinn方法。特别是,使用可训练的门网络来模仿Xpinn的硬分解,可以灵活地进行微调,以发现潜在的更好的分区。它的权重 - 将几个子网作为Apinn的输出。 APINN不需要复杂的接口条件,其子网可以利用所有训练样本,而不仅仅是其子域中的一部分培训数据。最后,每个子网络共享一个共同参数的一部分,以捕获每个分解函数中的相似组件。此外,遵循Hu等人的Pinn泛化理论。 [2021],我们表明Apinn可以通过正确的门网络初始化和通用域和功能分解来改善概括。对不同类型的PDE的广泛实验表明,Apinn如何改善PINN和XPINN方法。具体而言,我们介绍了Xpinn的性能与Pinn相似或更差的示例,因此Apinn可以显着改善两者。我们还显示了Xpinn已经比Pinn好的案例,因此Apinn仍然可以稍微改善Xpinn。此外,我们可视化优化的门控网络及其优化轨迹,并将其与其性能联系起来,这有助于发现可能最佳的分解。有趣的是,如果通过不同的分解初始化,相应apinns的性能可能会大不相同。反过来,这表明了设计针对正在考虑的微分方程问题的最佳域分解的潜力。
In this paper, we propose the augmented physics-informed neural network (APINN), which adopts soft and trainable domain decomposition and flexible parameter sharing to further improve the extended PINN (XPINN) as well as the vanilla PINN methods. In particular, a trainable gate network is employed to mimic the hard decomposition of XPINN, which can be flexibly fine-tuned for discovering a potentially better partition. It weight-averages several sub-nets as the output of APINN. APINN does not require complex interface conditions, and its sub-nets can take advantage of all training samples rather than just part of the training data in their subdomains. Lastly, each sub-net shares part of the common parameters to capture the similar components in each decomposed function. Furthermore, following the PINN generalization theory in Hu et al. [2021], we show that APINN can improve generalization by proper gate network initialization and general domain & function decomposition. Extensive experiments on different types of PDEs demonstrate how APINN improves the PINN and XPINN methods. Specifically, we present examples where XPINN performs similarly to or worse than PINN, so that APINN can significantly improve both. We also show cases where XPINN is already better than PINN, so APINN can still slightly improve XPINN. Furthermore, we visualize the optimized gating networks and their optimization trajectories, and connect them with their performance, which helps discover the possibly optimal decomposition. Interestingly, if initialized by different decomposition, the performances of corresponding APINNs can differ drastically. This, in turn, shows the potential to design an optimal domain decomposition for the differential equation problem under consideration.