论文标题

基准图形神经网络用于fMRI分析

Benchmarking Graph Neural Networks for FMRI analysis

论文作者

ElGazzar, Ahmed, Thomas, Rajat, van Wingen, Guido

论文摘要

图形神经网络(GNN)已成为从图形结构数据中学习的强大工具。此类数据的最重要示例是大脑,它是一个网络,从神经元的微尺度到区域的宏观尺度。该组织认为GNN是建模大脑活动的自然选择,因此在神经影像社区中引起了很多关注。然而,尚未以系统的方式评估采用这些模型而不是常规方法的优点来衡量GNN是否能够利用数据的基本结构来改善学习。在这项工作中,我们研究和评估了在两个多站点临床数据集中诊断重大抑郁症和自闭症谱系障碍的五个流行GNN体系结构的性能,以及在UKBIOBANK上从一般统一统一框架下的功能性脑扫描中的性别分类。我们的结果表明,GNN无法超越基于内核的结构 - 无知深度学习模型,在这种模型中,在所有情况下,1D CNNS都优于其他方法。我们强调,为功能性大脑数据创建最佳图形结构是阻碍GNNS性能的主要瓶颈,其中现有作品使用任意措施来定义导致嘈杂图的边缘。因此,我们建议将图形扩散整合到现有的架构中,并表明它可以减轻此问题并改善其性能。我们的结果要求在评估图形方法时提高适度和严格的验证,并主张为开发用于功能性神经成像应用的GNN的更多数据中心方法。

Graph Neural Networks (GNNs) have emerged as a powerful tool to learn from graph-structured data. A paramount example of such data is the brain, which operates as a network, from the micro-scale of neurons, to the macro-scale of regions. This organization deemed GNNs a natural tool of choice to model brain activity, and have consequently attracted a lot of attention in the neuroimaging community. Yet, the advantage of adopting these models over conventional methods has not yet been assessed in a systematic way to gauge if GNNs are capable of leveraging the underlying structure of the data to improve learning. In this work, we study and evaluate the performance of five popular GNN architectures in diagnosing major depression disorder and autism spectrum disorder in two multi-site clinical datasets, and sex classification on the UKBioBank, from functional brain scans under a general uniform framework. Our results show that GNNs fail to outperform kernel-based and structure-agnostic deep learning models, in which 1D CNNs outperform the other methods in all scenarios. We highlight that creating optimal graph structures for functional brain data is a major bottleneck hindering the performance of GNNs, where existing works use arbitrary measures to define the edges resulting in noisy graphs. We therefore propose to integrate graph diffusion into existing architectures and show that it can alleviate this problem and improve their performance. Our results call for increased moderation and rigorous validation when evaluating graph methods and advocate for more data-centeric approaches in developing GNNs for functional neuroimaging applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源