论文标题

修复和绑定:一种解决大规模二次编程问题的有效方法

Fix and Bound: An efficient approach for solving large-scale quadratic programming problems with box constraints

论文作者

Locatelli, Marco, Piccialli, Veronica, Sudoso, Antonio M.

论文摘要

在本文中,我们提出了一种分支结合的算法,用于用盒子约束(BoxQP)求解非convex二次编程问题。我们的方法结合了现有工具,例如半决赛编程(SDP)通过有效的不平等增强的界限,以及基于最佳的新线性剪切,从而导致可变固定。修复某些变量值的最重要效果是沿分支和结合树的尺寸减小,从而可以通过求解较小尺寸的SDP来计算边界。大型计算实验(最多$ n = 200 $)的测试实例表明,我们的方法是大型BoxQPS上的最新求解器。此外,我们在二进制QP问题的类别中测试了提出的方法,在该类别中,它与最先进的求解器表现出竞争性能。

In this paper, we propose a branch-and-bound algorithm for solving nonconvex quadratic programming problems with box constraints (BoxQP). Our approach combines existing tools, such as semidefinite programming (SDP) bounds strengthened through valid inequalities, with a new class of optimality-based linear cuts which leads to variable fixing. The most important effect of fixing the value of some variables is the size reduction along the branch-and-bound tree, allowing to compute bounds by solving SDPs of smaller dimension. Extensive computational experiments over large dimensional (up to $n=200$) test instances show that our method is the state-of-the-art solver on large-scale BoxQPs. Furthermore, we test the proposed approach on the class of binary QP problems, where it exhibits competitive performance with state-of-the-art solvers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源