论文标题
CLT,MDP和LDP,用于从无限分布的I.I.D.降采样的范围更新
CLT, MDP and LDP for Range-Renewals of I.I.D.Samplings from an Infinite Discrete Distribution
论文作者
论文摘要
令$ r_n $为$ n $简单样本中无限分发分布的不同值的数量。 1960年,巴哈杜尔(Bahadure)证明了$ \ displaystyle \ lim_ {n \ to \ infty} \ frac {r_n} {\ enum r_n} = 1 $ in Poybility; Chen等。从几乎确定的融合以及其他结果中证明了极限。在本说明中,我们在轻度条件下以$ r_n $的价格介绍了CLT,MDP和LDP的结果。
Let $R_n$ be the number of distinct values of the $n$ simple samples from an infinite discrete distribution. In 1960 Bahadure proved $\displaystyle \lim_{n\to \infty} \frac{R_n}{\Enum R_n}=1$ in probability; Chen et al. proved the limit in the sense of almost sure convergence, along with other results. In this note we present results of CLT, MDP and LDP for $R_n$ under mild conditions.