论文标题
3D对象分割的不确定性感知的多参数磁共振图像信息融合
Uncertainty-Aware Multi-Parametric Magnetic Resonance Image Information Fusion for 3D Object Segmentation
论文作者
论文摘要
多参数磁共振(MR)成像是诊所中必不可少的工具。因此,基于多参数MR成像的自动量分割对于计算机辅助疾病诊断,治疗计划和预后监测至关重要。尽管在基于深度学习的医学图像分析中进行了广泛的研究,但仍需要进一步研究以有效利用不同成像参数提供的信息。如何融合信息是该领域的关键问题。在这里,我们提出了一种不确定性感知的多参数MR图像特征融合方法,以充分利用信息以进行增强的3D图像分割。单个模式的独立预测中的不确定性用于指导多模式图像特征的融合。已经在两个数据集上进行了广泛的实验,一个用于脑组织分割,另一个用于腹部多器官分割,与现有模型相比,我们提出的方法可在更好的分割性能中获得更好的分割性能。
Multi-parametric magnetic resonance (MR) imaging is an indispensable tool in the clinic. Consequently, automatic volume-of-interest segmentation based on multi-parametric MR imaging is crucial for computer-aided disease diagnosis, treatment planning, and prognosis monitoring. Despite the extensive studies conducted in deep learning-based medical image analysis, further investigations are still required to effectively exploit the information provided by different imaging parameters. How to fuse the information is a key question in this field. Here, we propose an uncertainty-aware multi-parametric MR image feature fusion method to fully exploit the information for enhanced 3D image segmentation. Uncertainties in the independent predictions of individual modalities are utilized to guide the fusion of multi-modal image features. Extensive experiments on two datasets, one for brain tissue segmentation and the other for abdominal multi-organ segmentation, have been conducted, and our proposed method achieves better segmentation performance when compared to existing models.