论文标题
红外标量一环三点积分在循环正则化中
Infrared scalar one-loop three point integrals in loop regularization
论文作者
论文摘要
红外发散标量三点积分通过环路正则化方法评估。通过LOOP正则化,可以系统地评估三种红外发散积分,即具有一条和两个质量内部线的三角形图,三角形图,具有一个和两个质量的内部线。根据该方法,红外差异由所谓的滑动刻度$μ_{s} $调节,该$ _ {s} $扮演红外截止的作用。通过循环正则化获得的振幅取决于$μ_{s} $,因此我们可以通过改变$μ_{s} $提取不同的贡献。还得出了评估刻度一环三角图的一些一般结果。
The infrared divergent scalar three-point integrals are evaluated by the loop regularization method. Three kinds of infrared divergent integrals, i.e., massless triangle diagram, triangle diagrams with one and two massive internal lines, are systematically evaluated by loop regularization, analytic results are obtained. According the method, the infrared divergences are regulated by the so-called sliding scale $μ_{s}$ which plays the role of infrared cutoff. The amplitudes obtained through loop regularization depend on $μ_{s}$ such that we may extract different contribution by varying $μ_{s}$. Some general results for evaluation of scale one-loop triangle diagram are also derived.