论文标题
通过移动增强现实的元元的联合学习资源分配
Resource Allocation of Federated Learning for the Metaverse with Mobile Augmented Reality
论文作者
论文摘要
Metaverse最近受到了很多关注。通过移动增强现实(MAR)进行的元应用应用需要快速准确的对象检测,以将数字数据与现实世界混合。联合学习(FL)是一种引人入胜的分布式机器学习方法,因为它具有隐私性特征。由于隐私问题和移动设备上的计算资源有限,我们将FL纳入了MAR系统中,以合作训练模型。此外,为了平衡能源,执行延迟和模型准确性之间的权衡,从而满足了不同的需求和应用程序方案,我们制定了一个优化问题,以最大程度地减少总能量消耗,完成时间和模型准确性的加权组合。通过将非凸优化问题分解为两个子问题,我们设计了一种资源分配算法来确定每个参与设备的带宽分配,传输功率,CPU频率和视频框架分辨率。我们进一步介绍了所提出算法的收敛分析和计算复杂性。数值结果表明,与现有基准相比,我们提出的算法在不同的权重参数下具有更好的性能(就能耗,完成时间和模型准确性而言)。
The Metaverse has received much attention recently. Metaverse applications via mobile augmented reality (MAR) require rapid and accurate object detection to mix digital data with the real world. Federated learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics. Due to privacy concerns and the limited computation resources on mobile devices, we incorporate FL into MAR systems of the Metaverse to train a model cooperatively. Besides, to balance the trade-off between energy, execution latency and model accuracy, thereby accommodating different demands and application scenarios, we formulate an optimization problem to minimize a weighted combination of total energy consumption, completion time and model accuracy. Through decomposing the non-convex optimization problem into two subproblems, we devise a resource allocation algorithm to determine the bandwidth allocation, transmission power, CPU frequency and video frame resolution for each participating device. We further present the convergence analysis and computational complexity of the proposed algorithm. Numerical results show that our proposed algorithm has better performance (in terms of energy consumption, completion time and model accuracy) under different weight parameters compared to existing benchmarks.