论文标题

贝叶斯非参数Erlang混合物模型用于生存分析

Bayesian Nonparametric Erlang Mixture Modeling for Survival Analysis

论文作者

Li, Yunzhe, Lee, Juhee, Kottas, Athanasios

论文摘要

我们开发了一种灵活的Erlang混合模型,用于生存分析。生存密度的模型是由Erlang密度的结构化混合物构建的,将整数形状参数与公共尺度参数混合。混合物的权重是通过在正真实线上的分布函数的增量来构建的,在正真实线上,该函数是在提前分配的。该模型具有相对简单的结构,可以平衡灵活性与有效的后验计算。此外,这意味着涉及时间依赖性混合物的危险功能的混合物表示,从而提供了危险估计的一般方法。我们扩展了模型,以处理与多个实验组相对应的生存响应,并使用定义混合物权重的特定组特定分布的依赖性dirichlet过程。讨论了模型属性,先前的规范和后验模拟,并使用合成和真实的数据示例说明了该方法。

We develop a flexible Erlang mixture model for survival analysis. The model for the survival density is built from a structured mixture of Erlang densities, mixing on the integer shape parameter with a common scale parameter. The mixture weights are constructed through increments of a distribution function on the positive real line, which is assigned a Dirichlet process prior. The model has a relatively simple structure, balancing flexibility with efficient posterior computation. Moreover, it implies a mixture representation for the hazard function that involves time-dependent mixture weights, thus offering a general approach to hazard estimation. We extend the model to handle survival responses corresponding to multiple experimental groups, using a dependent Dirichlet process prior for the group-specific distributions that define the mixture weights. Model properties, prior specification, and posterior simulation are discussed, and the methodology is illustrated with synthetic and real data examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源