论文标题
冠状病毒统计会导致情感偏见:社交媒体文本挖掘观点
Coronavirus statistics causes emotional bias: a social media text mining perspective
论文作者
论文摘要
尽管Covid-19已对人类的影响很长一段时间,但人们搜索网络以获取与大流行有关的信息,从而引起焦虑。从理论的角度来看,先前的研究已经证实,1900案例的数量可能会引起负面情绪,但是不同维度的统计数据(例如进口案例的数量,当地案例的数量,当地案件的数量以及政府指定的锁定区的数量)如何刺激人们的情绪,需要详细的理解。为了获得COVID-19的人们的观点,本文首先提出了一个深度学习模型,该模型从带有位置标签的文本数据中对与大流行有关的文本进行了分类。接下来,它基于多任务学习进行了情感分析。最后,它通过情感分析的输出进行了固定效应面板回归。算法的性能显示出令人鼓舞的结果。这项实证研究表明,虽然当地病例的数量与风险感知呈正相关,但进口案件的数量与置信度有负相关,这解释了为什么公民倾向于将旷日持久的大流行归因于外国因素。此外,这项研究发现,以前的大流行袭击城市从苦难中缓慢恢复,而地方政府在医疗保健方面的支出可以改善情况。我们的研究说明了由于认知偏见而引起的统计信息来源的风险感知和信心的原因。它补充了与流行信息有关的知识。它还有助于使用先进的深度学习技术与经验回归方法结合情感分析的框架。
While COVID-19 has impacted humans for a long time, people search the web for pandemic-related information, causing anxiety. From a theoretic perspective, previous studies have confirmed that the number of COVID-19 cases can cause negative emotions, but how statistics of different dimensions, such as the number of imported cases, the number of local cases, and the number of government-designated lockdown zones, stimulate people's emotions requires detailed understanding. In order to obtain the views of people on COVID-19, this paper first proposes a deep learning model which classifies texts related to the pandemic from text data with place labels. Next, it conducts a sentiment analysis based on multi-task learning. Finally, it carries out a fixed-effect panel regression with outputs of the sentiment analysis. The performance of the algorithm shows a promising result. The empirical study demonstrates while the number of local cases is positively associated with risk perception, the number of imported cases is negatively associated with confidence levels, which explains why citizens tend to ascribe the protracted pandemic to foreign factors. Besides, this study finds that previous pandemic hits cities recover slowly from the suffering, while local governments' spending on healthcare can improve the situation. Our study illustrates the reasons for risk perception and confidence based on different sources of statistical information due to cognitive bias. It complements the knowledge related to epidemic information. It also contributes to a framework that combines sentiment analysis using advanced deep learning technology with the empirical regression method.