论文标题

探索从粉末X射线衍射光谱中进行多相识别和定量的监督机器学习

Exploring Supervised Machine Learning for Multi-Phase Identification and Quantification from Powder X-Ray Diffraction Spectra

论文作者

Greasley, Jaimie, Hosein, Patrick

论文摘要

粉末X射线衍射分析是材料表征方法的关键组成部分。辨别特征性的布拉格强度峰并将其分配到已知的晶体相是评估衍射光谱的第一个定性步骤。在相识别之后,可以使用Rietveld的完善来提取粉末数据中隐藏的定量,特定于材料的参数。这些表征程序尚未耗时,并抑制了材料科学工作流程的效率。数据科学技术的普及和推进的不断增长为材料分析自动化提供了一个明显的解决方案。深度学习已成为预测X射线光谱的晶体学参数和特征的主要重点。但是,策划大型,标记的实验数据集的不可行性意味着必须诉诸大量理论模拟以进行粉末数据增强,以有效地训练深层模型。在本文中,我们对传统的监督学习算法感兴趣,以代替深度学习,以用于生物医学应用的多标签晶体阶段识别和定量相分析。首先,使用非常有限的实验数据对模型进行了培训。此外,我们合并了模拟XRD数据,以评估模型的通用性以及基于模拟的培训在现实世界X射线衍射应用中的预测分析的功效。

Powder X-ray diffraction analysis is a critical component of materials characterization methodologies. Discerning characteristic Bragg intensity peaks and assigning them to known crystalline phases is the first qualitative step of evaluating diffraction spectra. Subsequent to phase identification, Rietveld refinement may be employed to extract the abundance of quantitative, material-specific parameters hidden within powder data. These characterization procedures are yet time-consuming and inhibit efficiency in materials science workflows. The ever-increasing popularity and propulsion of data science techniques has provided an obvious solution on the course towards materials analysis automation. Deep learning has become a prime focus for predicting crystallographic parameters and features from X-ray spectra. However, the infeasibility of curating large, well-labelled experimental datasets means that one must resort to a large number of theoretic simulations for powder data augmentation to effectively train deep models. Herein, we are interested in conventional supervised learning algorithms in lieu of deep learning for multi-label crystalline phase identification and quantitative phase analysis for a biomedical application. First, models were trained using very limited experimental data. Further, we incorporated simulated XRD data to assess model generalizability as well as the efficacy of simulation-based training for predictive analysis in a real-world X-ray diffraction application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源