论文标题
非线性柔性机械超材料的调节不稳定性
Modulation instability in nonlinear flexible mechanical metamaterials
论文作者
论文摘要
在本文中,我们研究了柔性机械超材料(FlexMM)的一维链构型的调节不稳定性(MI)。使用集体元件方法,可以通过离散方程的耦合系统对刚性质量单位的纵向位移和旋转进行建模。在长波长状态下,应用多尺度方法我们得出了一个有效的非线性schrödinger方程,以缓慢变化的包膜旋转波。然后,我们能够建立MI出现到超材料和波数的参数的图。我们还强调了MI表现中两个自由度之间旋转置换耦合的关键作用。所有分析结果均通过对完整离散和非线性肿块问题的数值模拟确认。这些结果为非线性超材料提供了有趣的设计指南,该指南可为高振幅波提供稳定性,或者相反是观察不稳定性的好候选者。
In this paper, we study modulation instabilities (MI) in a one-dimensional chain configuration of a flexible mechanical metamaterial (flexMM). Using the lumped element approach, flexMMs can be modeled by a coupled system of discrete equations for the longitudinal displacements and rotations of the rigid mass units. In the long wavelength regime, and applying the multiple-scales method we derive an effective nonlinear Schrödinger equation for slowly varying envelope rotational waves. We are then able to establish a map of the occurrence of MI to the parameters of the metamaterials and the wavenumbers. We also highlight the key role of the rotation-displacement coupling between the two degrees of freedom in the manifestation of MI. All analytical findings are confirmed by numerical simulations of the full discrete and nonlinear lump problem. These results provide interesting design guidelines for nonlinear metamaterials offering either stability to high amplitude waves, or conversely being good candidates to observe instabilities.