论文标题

爱因斯坦 - 斯卡尔 - 高斯 - 鲍尼特理论在哪里,为什么要崩溃?

Where and why does Einstein-Scalar-Gauss-Bonnet theory break down?

论文作者

R, Abhishek Hegade K, Ripley, Justin L., Yunes, Nicolás

论文摘要

我们对爱因斯坦 - 斯卡尔 - 高斯河内(ESGB)重力的预测性丧失进行系统探索。我们首先制定了一种表征该理论中运动方程双曲线的分解的量规协方差方法。借助这种形式主义,我们表明强烈的大地测量集中会导致双曲线的崩溃,而后者与违反无效融合条件无关。然后,我们在重力塌陷期间的数值研究方程的双曲线度,用于两种特定的ESGB重力理论:“移动对称的高斯 - 骨网重”,以及该理论的一种版本,该理论允许“自发性地标记”黑色孔。我们设计了一个“相位空间”模型,以描述给定的初始数据类别的最终状态。使用我们的相空间图片,我们证明了我们认为的两种理论对一系列GB耦合保持预测性(双曲线)。但是,耦合的范围很小,因此,“自发标量”溶液的存在需要对初始数据进行微调。因此,我们的结果对是否可以在自然界现实地实现标量的黑洞解决方案的疑问,即使ESGB重力恰好是正确的重力描述。

We present a systematic exploration of the loss of predictivity in Einstein-scalar-Gauss-Bonnet (ESGB) gravity. We first formulate a gauge covariant method of characterizing the breakdown of the hyperbolicity of the equations of motion in the theory. With this formalism, we show that strong geodesic focusing leads to the breakdown of hyperbolicity, and the latter is unrelated to the violation of the null convergence condition. We then numerically study the hyperbolicity of the equations during gravitational collapse for two specific ESGB gravity theories: "shift symmetric Gauss-Bonnet gravity" and a version of the theory that admits "spontaneously scalarized" black holes. We devise a "phase space" model to describe the end states for a given class of initial data. Using our phase space picture, we demonstrate that the two theories we consider remain predictive (hyperbolic) for a range of GB couplings. The range of couplings, however, is small, and thus, the presence of "spontaneously scalarized" solutions requires fine-tuning of initial data. Our results, therefore, cast doubt as to whether scalarized black hole solutions can be realistically realized in Nature even if ESGB gravity happened to be the correct gravitational description.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源