论文标题

通过量子自旋液体介导的阻力阻力

Drag resistance mediated by quantum spin liquids

论文作者

Mazzilli, Raffaele, Levchenko, Alex, König, Elio J.

论文摘要

材料合成的最新进展使得有可能实现量子旋转液体(QSL)的二维候选材料(例如$α$ -RUCL $ _3 $,1T-TASE $ _2 $和1T-TAS $ _2 $)。在这项工作中,我们提出了一种实验设置,该设置利用非局部电探针获得有关无间隙QSL的传输特性的信息。所提出的设置是一个旋子介导的阻力实验:将电流注入两层之一,并在第二个金属膜上测量电压。总体动量转移机制是一个两步过程,这是由量子自旋液体和电子旋转的局部力矩之间的近代相互作用介导的。在QSL层中宽松的动量的极限中,我们计算了使用Aslamazov-Larkin图的Kitaev,$ \ Mathbb {Z} _2 $和U(1)QSL的阻力松弛率。但是,我们发现QSL层中主动动量松弛的情况更加相关,因此基于Boltzmann动力学方程式开发模型来描述所提出的设置。在此框架内,我们计算了带有Fermi表面的U(1)和$ \ Mathbb {Z} _2 $ QSL的阻力电阻率的低温缩放行为。在某些方案中,我们发现温度缩放的交叉量在$ \ mathbb {z} _2 $和u(1)QSL之间是不同的,这两者都因为u(1)QSL的非FERMI液体性质,并且由于QSL层中的质量不同的动量放松机制在质量上不同。我们的发现表明,可以对系统的参数进行调整,以使Spinon介导的拖动拖动总比例的很大一部分。

Recent advances in material synthesis made it possible to realize two-dimensional monolayers of candidate materials for a quantum spin liquid (QSL) such as $α$-RuCl$_3$,1T-TaSe$_2$ and 1T-TaS$_2$. In this work, we propose an experimental setup that exploits nonlocal electrical probes to gain information on the transport properties of a gapless QSL. The proposed setup is a spinon-mediated drag experiment: a current is injected in one of the two layers and a voltage is measured on the second metallic film. The overall momentum transfer mechanism is a two-step process mediated by Kondo interaction between the local moments in the quantum spin liquid and the spins of the electrons. In the limit of negligible momentum relaxed within the QSL layer, we calculate the drag relaxation rate for Kitaev, $\mathbb{Z}_2$, and U(1) QSLs using Aslamazov-Larkin diagrams. We find, however, that the case of dominant momentum relaxation within the QSL layer is far more relevant and thus develop a model based on the Boltzmann kinetic equation to describe the proposed setup. Within this framework we calculate the low temperature scaling behavior of the drag resistivity, both for U(1) and $\mathbb{Z}_2$ QSLs with Fermi surfaces. In some regimes we find a crossover in the temperature scaling that is different between the $\mathbb{Z}_2$ and U(1) QSL both because of the non-Fermi liquid nature of the U(1) QSL, and because of the qualitatively different momentum relaxation mechanism within the QSL layer. Our findings suggest that parameters of the system can be tuned to make the spinon-mediated drag a significant fraction of the total transresistance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源