论文标题

主动学习框架以自动化网络施工分类

Active Learning Framework to Automate NetworkTraffic Classification

论文作者

Pešek, Jaroslav, Soukup, Dominik, Čejka, Tomáš

论文摘要

最近的网络流量分类方法受益于机器学习(ML)技术。但是,由于使用ML而引起的挑战,例如:缺乏高质量的数据集,数据拖船和其他效果,导致衰老和ML模型,网络流量的大量。本文纸张认为,需要增强传统的ML ML培训和部署的传统工作流量,并适应了Aptims Learning Convacton网络流量分析是必要的。该论文提出了一个新颖的ActiveLearning框架(ALF)来解决此主题。 ALF提供了准备好的软件组件,可用于部署ActiveLearning循环并维护ALF实例,该实例可以自动连续验证数据集和ML模型。结果可用于基于IP流的高速(100 GB/s)网络的分析,还支持研究实验,以注释,评估,数据量限制等各个不同的策略和方法。最后,本文列出了一些研究挑战的挑战,其中一些研究的挑战是在实践中与ALF的第一个实验中提出的。

Recent network traffic classification methods benefitfrom machine learning (ML) technology. However, there aremany challenges due to use of ML, such as: lack of high-qualityannotated datasets, data-drifts and other effects causing aging ofdatasets and ML models, high volumes of network traffic etc. Thispaper argues that it is necessary to augment traditional workflowsof ML training&deployment and adapt Active Learning concepton network traffic analysis. The paper presents a novel ActiveLearning Framework (ALF) to address this topic. ALF providesprepared software components that can be used to deploy an activelearning loop and maintain an ALF instance that continuouslyevolves a dataset and ML model automatically. The resultingsolution is deployable for IP flow-based analysis of high-speed(100 Gb/s) networks, and also supports research experiments ondifferent strategies and methods for annotation, evaluation, datasetoptimization, etc. Finally, the paper lists some research challengesthat emerge from the first experiments with ALF in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源