论文标题
欧拉方案的稳定性和收敛性用于Banach空间中随机线性进化方程
Stability and convergence of the Euler scheme for stochastic linear evolution equations in Banach spaces
论文作者
论文摘要
对于随机线性进化方程的Euler方案,建立了离散随机最大$ l^p $ -Reculacultity估算,并且在Norm $ $ $ \ | \ | \ cdot \ | _ {l^p((0,T)\ times \ times \ times \timesmomΩ; l^q(l^q(lathcal o)$,$,$,p,p \ p \ p \ p \ y中,双重论点。
For the Euler scheme of the stochastic linear evolution equations, discrete stochastic maximal $ L^p $-regularity estimate is established, and a sharp error estimate in the norm $ \|\cdot\|_{L^p((0,T)\timesΩ;L^q(\mathcal O))} $, $ p,q \in [2,\infty) $, is derived via a duality argument.