论文标题
基于少量/零拍学习的视觉语义细分:概述
Visual Semantic Segmentation Based on Few/Zero-Shot Learning: An Overview
论文作者
论文摘要
视觉语义分割旨在将视觉样本分离为具有特定语义属性的不同块,并确定每个块的类别,并且在环境感知中起着至关重要的作用。传统的基于学习的视觉语义细分方法在大规模培训数据上大量核算具有密集注释的大规模培训数据,并且始终无法估算看不见类别的准确的语义标签。这种阻碍激发了研究视觉语义分割的热潮,借助少量/零射击学习。少数/零射击的视觉语义分割的出现和快速进步使得可以从一些标记或零标记的样本中学习看不见的类别,从而将扩展扩展到实际应用。因此,本文重点介绍了最近发表的几个/零射击的视觉语义分割方法,从2D到3D空间不等,并探讨了在不同分割情况下技术和解的共同点和差异。具体而言,简要审查和讨论了很少的/零射击视觉语义分割的初步,包括问题定义,典型数据集和技术补救措施。此外,还涉及三个典型的实例化,以发现少量/零射击学习与视觉语义分割的相互作用,包括图像语义分割,视频对象分割和3D分割。最后,讨论了很少的/零射击视觉语义细分的未来挑战。
Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block, and it plays a crucial role in environmental perception. Conventional learning-based visual semantic segmentation approaches count heavily on large-scale training data with dense annotations and consistently fail to estimate accurate semantic labels for unseen categories. This obstruction spurs a craze for studying visual semantic segmentation with the assistance of few/zero-shot learning. The emergence and rapid progress of few/zero-shot visual semantic segmentation make it possible to learn unseen-category from a few labeled or zero-labeled samples, which advances the extension to practical applications. Therefore, this paper focuses on the recently published few/zero-shot visual semantic segmentation methods varying from 2D to 3D space and explores the commonalities and discrepancies of technical settlements under different segmentation circumstances. Specifically, the preliminaries on few/zero-shot visual semantic segmentation, including the problem definitions, typical datasets, and technical remedies, are briefly reviewed and discussed. Moreover, three typical instantiations are involved to uncover the interactions of few/zero-shot learning with visual semantic segmentation, including image semantic segmentation, video object segmentation, and 3D segmentation. Finally, the future challenges of few/zero-shot visual semantic segmentation are discussed.