论文标题

高光谱图像分类的概率深度学习

Probabilistic Deep Metric Learning for Hyperspectral Image Classification

论文作者

Wang, Chengkun, Zheng, Wenzhao, Sun, Xian, Lu, Jiwen, Zhou, Jie

论文摘要

本文提出了用于高光谱图像分类的概率深度度量学习(PDML)框架,该框架旨在预测每个像素的类别,用于由高光谱传感器捕获的图像。高光谱图像分类的核心问题是类材料与阶级材料之间的光谱相似性之间的光谱变异性,从而激发了空间信息的进一步融合以根据其周围的斑块来区分像素。但是,由于大多数高光谱传感器的空间分辨率低,因此不同的像素甚至相同的像素可能不会编码相同的材料,从而导致对特定像素的判断不一致。为了解决这个问题,我们提出了一个概率的深度度量学习框架,以模拟观察到的像素的光谱分布的分类不确定性。我们建议学习贴片中每个像素的全局概率分布和一个概率度量,以模拟分布之间的距离。我们将补丁中的每个像素视为训练样本,使我们能够与常规方法相比,从补丁中利用更多信息。我们的框架可以很容易地应用于具有各种网络体系结构和损失功能的现有高光谱图像分类方法。对四个广泛使用的数据集进行了广泛的实验,包括IN,UP,KSC和Houston 2013数据集表明,我们的框架可改善现有方法的性能,并进一步实现最新技术的状态。代码可在以下网址提供:https://github.com/wzzheng/pdml。

This paper proposes a probabilistic deep metric learning (PDML) framework for hyperspectral image classification, which aims to predict the category of each pixel for an image captured by hyperspectral sensors. The core problem for hyperspectral image classification is the spectral variability between intraclass materials and the spectral similarity between interclass materials, motivating the further incorporation of spatial information to differentiate a pixel based on its surrounding patch. However, different pixels and even the same pixel in one patch might not encode the same material due to the low spatial resolution of most hyperspectral sensors, leading to an inconsistent judgment of a specific pixel. To address this issue, we propose a probabilistic deep metric learning framework to model the categorical uncertainty of the spectral distribution of an observed pixel. We propose to learn a global probabilistic distribution for each pixel in the patch and a probabilistic metric to model the distance between distributions. We treat each pixel in a patch as a training sample, enabling us to exploit more information from the patch compared with conventional methods. Our framework can be readily applied to existing hyperspectral image classification methods with various network architectures and loss functions. Extensive experiments on four widely used datasets including IN, UP, KSC, and Houston 2013 datasets demonstrate that our framework improves the performance of existing methods and further achieves the state of the art. Code is available at: https://github.com/wzzheng/PDML.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源