论文标题

回响作为语音分离的监督

Reverberation as Supervision for Speech Separation

论文作者

Aralikatti, Rohith, Boeddeker, Christoph, Wichern, Gordon, Subramanian, Aswin Shanmugam, Roux, Jonathan Le

论文摘要

本文提出回响作为监督(RAS),这是一种新颖的无监督损失函数,用于单渠道回响分离。无监督分离的先前方法需要合成混合物的混合物或假定教师模型的存在,这使得它们很难将其视为解释动物听觉系统中分离能力的潜在方法。我们假设在训练时可以使用两通道混合物,并训练神经网络以将其中一个通道作为输入的来源分开,以便可以从分离的来源预测另一个通道。由于每个频道的房间冲动响应(RIR)之间的关系取决于网络未知的来源的位置,因此网络不能依靠学习这种关系。取而代之的是,我们提出的损耗函数将每个分离的来源拟合到目标通道中的混合物,并将所得混合物与地面真相进行比较。我们表明,将预测的右通道混合物相对于地面真理的预测右通道混合物的规模不变信号距离(SI-SDR)最小化,隐含地指导网络分离左通道源。在基于Whamr的半监督混响分离任务上!数据集使用训练数据,其中仅5%(分别为10%)的混合物标记了相关的隔离来源,我们在全面训练集进行监督时获得了70%(分别为78%,78%)的SI-SDR改进,而仅在标记的数据获得的模型中获得的模型仅获得43%(spess.45%)。

This paper proposes reverberation as supervision (RAS), a novel unsupervised loss function for single-channel reverberant speech separation. Prior methods for unsupervised separation required the synthesis of mixtures of mixtures or assumed the existence of a teacher model, making them difficult to consider as potential methods explaining the emergence of separation abilities in an animal's auditory system. We assume the availability of two-channel mixtures at training time, and train a neural network to separate the sources given one of the channels as input such that the other channel may be predicted from the separated sources. As the relationship between the room impulse responses (RIRs) of each channel depends on the locations of the sources, which are unknown to the network, the network cannot rely on learning that relationship. Instead, our proposed loss function fits each of the separated sources to the mixture in the target channel via Wiener filtering, and compares the resulting mixture to the ground-truth one. We show that minimizing the scale-invariant signal-to-distortion ratio (SI-SDR) of the predicted right-channel mixture with respect to the ground truth implicitly guides the network towards separating the left-channel sources. On a semi-supervised reverberant speech separation task based on the WHAMR! dataset, using training data where just 5% (resp., 10%) of the mixtures are labeled with associated isolated sources, we achieve 70% (resp., 78%) of the SI-SDR improvement obtained when training with supervision on the full training set, while a model trained only on the labeled data obtains 43% (resp., 45%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源