论文标题
大脑奖励系统的时间域分类:海马和伏隔核中天然和药物奖励驱动的局部现场潜在信号的分析
Time-Domain Classification of the Brain Reward System: Analysis of Natural and Drug Reward Driven Local Field Potential Signals in Hippocampus and Nucleus Accumbens
论文作者
论文摘要
成瘾是一个主要的公共卫生问题,其特征是强迫奖励的行为。从海马(髋关节)到伏隔核(NAC)的兴奋性谷氨酸能信号介导了成瘾中学习的行为。有限的比较研究研究了自然和非自然奖励来源激活的神经途径。这项研究评估了使用局部田间潜力(LFP)奖励食物(天然)和吗啡(药物)奖励来源相关的髋关节和NAC的神经活动。我们开发了新颖的方法,通过考虑这些信号的时域特征将LFP信号分类为奖励和记录区域的来源。建议的方法包括使用自相关,Lyapunov指数和Hurst指数的LFP信号的验证步骤,以评估这些信号的有意义稳定性(缺乏混乱)。通过利用LFP信号的概率密度函数(PDF)并应用Kullback-Leibler Divergence(KLD),将数据分类为奖励来源。同样,使用对称的点模式技术对髋关节和NAC区域进行了视觉分离和分类,可以实时应用,以确保在LFP记录期间准确地针对感兴趣的大脑区域。我们相信我们的方法提供了一种计算轻快,快速,实时信号分析方法,并提供了现实世界实现。
Addiction is a major public health concern characterized by compulsive reward-seeking behavior. The excitatory glutamatergic signals from the hippocampus (HIP) to the Nucleus accumbens (NAc) mediate learned behavior in addiction. Limited comparative studies have investigated the neural pathways activated by natural and unnatural reward sources. This study has evaluated neural activities in HIP and NAc associated with food (natural) and morphine (drug) reward sources using local field potential (LFP). We developed novel approaches to classify LFP signals into the source of reward and recorded regions by considering the time-domain feature of these signals. Proposed methods included a validation step of the LFP signals using autocorrelation, Lyapunov exponent and Hurst exponent to assess the meaningful stability of these signals (lack of chaos). By utilizing the probability density function (PDF) of LFP signals and applying Kullback-Leibler divergence (KLD), data were classified to the source of the reward. Also, HIP and NAc regions were visually separated and classified using the symmetrized dot pattern technique, which can be applied in real-time to ensure the deep brain region of interest is being targeted accurately during LFP recording. We believe our method provides a computationally light and fast, real-time signal analysis approach with real-world implementation.