论文标题
原子图案控制着晶界的晶界装饰
Atomic motifs govern the decoration of grain boundaries by interstitial solutes
论文作者
论文摘要
晶界,不同定向晶体之间的二维(2D)缺陷,材料的机械和运输特性。自从Sorby首次成像谷物以来,即使经过将近一个半世纪的研究,我们对谷物边界的基本理解仍然是不完整的。在这里,我们提出了一项系统的研究,超过9个尺寸尺度的数量级,其中我们分析了五个层次结构层面的两个相邻晶体之间的2D缺陷,并研究了它们的晶体学,成分和电子特征。水平是(a)宏观界面对准和谷物不良方向(此处保持恒定); (b)在相同的方向差异方面的倾斜倾斜度的系统介观变化; (c)边界平面内的方面,原子基序(结构单位)和内部纳米镜下缺陷; (d)晶界化学; (e)原子基序的电子结构。作为模型材料,我们使用与B和C合金的FE,从而利用了该系统中界面结构和化学的强相互依存关系。该模型系统是每年生产的19亿吨钢的基础,并且具有催化剂的重要作用。令人惊讶的是,我们发现,即使是GB平面倾向的变化也会影响GB组成和原子布置。因此,它是最小的结构分层水平,即原子基序,它控制着晶界最重要的化学特性。这一发现不仅结束了此类缺陷的结构和化学组成之间的缺失联系,而且还使晶界化学状态的靶向设计和钝化使他们摆脱了其作为腐蚀,氢软化或机械故障的入口门的作用。
Grain boundaries, the two-dimensional (2D) defects between differently oriented crystals, control mechanical and transport properties of materials. Our fundamental understanding of grain boundaries is still incomplete even after nearly a century and a half of research since Sorby first imaged grains. Here, we present a systematic study, over 9 orders of magnitude of size scales, in which we analyze 2D defects between two neighboring crystals across five hierarchy levels and investigate their crystallographic, compositional, and electronic features. The levels are (a) the macroscale interface alignment and grain misorientation (held constant here); (b) the systematic mesoscopic change in the inclination of the grain boundary plane for the same orientation difference; (c) the facets, atomic motifs (structural units), and internal nanoscopic defects within the boundary plane; (d) the grain boundary chemistry; and (e) the electronic structure of the atomic motifs. As a model material, we use Fe alloyed with B and C, exploiting the strong interdependence of interface structure and chemistry in this system. This model system is the basis of the 1.9 billion tons of steel produced annually and has an eminent role as a catalyst. Surprisingly, we find that even a change in the inclination of the GB plane with identical misorientation impacts GB composition and atomic arrangement. Thus, it is the smallest structural hierarchical level, the atomic motifs, which control the most important chemical properties of the grain boundaries. This finding not only closes a missing link between the structure and chemical composition of such defects but also enables the targeted design and passivation of the chemical state of grain boundaries to free them from their role as entry gates for corrosion, hydrogen embrittlement, or mechanical failure.