论文标题

COVID-19 Evolution的SIR模型的变化

Variations of the SIR model for COVID-19 evolution

论文作者

Bizet, Nana Cabo, Núñez, Jonanthan Hidalgo, Rivera, Gil Estefano Rodrígez

论文摘要

在这项工作中,我们讨论了爵士流行病学模型及其不同的变化,适用于COVID-19-19的传播。我们采用了瓜纳华托州和墨西哥的数据。我们提出了一些可以改善这些模型的预测的考虑因素。我们考虑时间依赖于时间的感染率,并根据数据进行调整。从线性制度开始,该制度的人口小得多,该国或州人口和易感性的人口可以在方便的单位至s约为1时近似,我们将拟合参数。我们还考虑了易感性开始从1出发时的情况,为此,我们调整有效的传染率。我们还探索了检测到的人群和实际人群的比率,并获得了大约10%的分析情况。我们通过使拟合度与恢复的情况相比,估计死亡人数,此拟合是首先近似线性的,但是其他权力可以给出良好的协议。通过对过去数据的预测,我们得出的结论是,SIR模型的适应性在描述Pandemia的传播中,特别是在有限的时间段内可以很好地使用。

In this work, we discuss the SIR epidemiological model and different variations of it applied to the propagation of the COVID-19 pandemia; we employ the data of the state of Guanajuato and of Mexico. We present some considerations that can improve the predictions made by those models. We consider a time-dependent infection rate, which we adjust to the data. Starting from a linear regime where the populations are much smaller that the country or state population and the population of susceptible (S) can be approximated in convenient units to S approximately 1, we make fits of the parameters. We also consider the case when the susceptible starts departing from 1, for this case we adjust an effective contagion rate. We also explore the ratio of detected populations and the real ones, obtaining that -for the analyzed case it is of approximately 10%. We estimate the number of deaths by making a fit versus the recovered cases, this fit is in first approximation linear, but other powers can give a good agreement. By predictions to past data, we conclude that adaptations of the SIR model can be of great use in describing pandemia's propagation, specially in limited time periods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源