论文标题

人工智能材料的材料材料方法的方法:最新的,挑战和未来的方向

Artificial intelligence approaches for materials-by-design of energetic materials: state-of-the-art, challenges, and future directions

论文作者

Choi, Joseph B., Nguyen, Phong C. H., Sen, Oishik, Udaykumar, H. S., Baek, Stephen

论文摘要

人工智能(AI)正在迅速成为解决各种复杂材料设计问题的启示工具。本文旨在审查AI驱动材料的最新进展及其在能量材料(EM)中的应用。经过数值模拟和/或物理实验的数据训练,AI模型可以吸收设计参数空间内的趋势和模式,识别最佳材料设计(微型形态,复合材料中的材料组合等),并指向具有出色/目标属性和性能属性和性能指标的设计。我们审查了针对此类功能的方法,这些方法是针对材料的三个主要阶段,即微观结构形态学的表示(即形状描述符),结构 - 专业性能(S-P-P)链接估算,以及优化/设计探索。我们从这些方法的潜力,实用性和功效来实现材料来实现这些方法方面提供了观点。具体而言,文献中的方法是根据其从少量/有限的数据,计算复杂性,对其他材料物种的可推广性/可伸缩性以及模型预测的可解释性以及监督/数据注释的负担来评估的。最后,我们建议一些有希望的未来研究指示逐个设计的材料,例如元学习,积极学习,贝叶斯学习和半/弱监督的学习,以弥合机器学习研究与EM研究之间的差距。

Artificial intelligence (AI) is rapidly emerging as an enabling tool for solving various complex materials design problems. This paper aims to review recent advances in AI-driven materials-by-design and their applications to energetic materials (EM). Trained with data from numerical simulations and/or physical experiments, AI models can assimilate trends and patterns within the design parameter space, identify optimal material designs (micro-morphologies, combinations of materials in composites, etc.), and point to designs with superior/targeted property and performance metrics. We review approaches focusing on such capabilities with respect to the three main stages of materials-by-design, namely representation learning of microstructure morphology (i.e., shape descriptors), structure-property-performance (S-P-P) linkage estimation, and optimization/design exploration. We provide a perspective view of these methods in terms of their potential, practicality, and efficacy towards the realization of materials-by-design. Specifically, methods in the literature are evaluated in terms of their capacity to learn from a small/limited number of data, computational complexity, generalizability/scalability to other material species and operating conditions, interpretability of the model predictions, and the burden of supervision/data annotation. Finally, we suggest a few promising future research directions for EM materials-by-design, such as meta-learning, active learning, Bayesian learning, and semi-/weakly-supervised learning, to bridge the gap between machine learning research and EM research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源