论文标题

使用概念感知信息对时间知识图上的几乎没有诱导的归纳学习

Few-Shot Inductive Learning on Temporal Knowledge Graphs using Concept-Aware Information

论文作者

Ding, Zifeng, Wu, Jingpei, He, Bailan, Ma, Yunpu, Han, Zhen, Tresp, Volker

论文摘要

知识图完成(KGC)旨在预测知识图(kg)实体之间缺少的链接。尽管已经为kgc开发了各种方法,但其中大多数只能处理训练集中看到的KG实体,并且在预测测试集中有关新实体的链接方面无法表现良好。时间知识图(TKG)存在类似的问题,并且没有开发用于建模新出现的实体的先前时间知识图(TKGC)方法。与KGS相比,TKGS需要建模的时间推理技术,这自然增加了处理新颖但看不见的实体的困难。在这项工作中,我们专注于看不见实体对TKG的表现的归纳学习。我们建议通过使用元学习框架并利用与每个未见实体相关的少数几个边缘所提供的元信息来预测TKGS的几杆链接(OOG)链接链接预测任务,我们通过链接中的链接中缺失实体。我们为TKG构建了三个新数据集,用于少量OOG链接预测,并提出了一个模型,可在实体之间挖掘概念感知信息。实验结果表明,我们的模型在所有三个数据集上都能达到卓越的性能,而我们的概念感知的建模组件表现出强烈的效果。

Knowledge graph completion (KGC) aims to predict the missing links among knowledge graph (KG) entities. Though various methods have been developed for KGC, most of them can only deal with the KG entities seen in the training set and cannot perform well in predicting links concerning novel entities in the test set. Similar problem exists in temporal knowledge graphs (TKGs), and no previous temporal knowledge graph completion (TKGC) method is developed for modeling newly-emerged entities. Compared to KGs, TKGs require temporal reasoning techniques for modeling, which naturally increases the difficulty in dealing with novel, yet unseen entities. In this work, we focus on the inductive learning of unseen entities' representations on TKGs. We propose a few-shot out-of-graph (OOG) link prediction task for TKGs, where we predict the missing entities from the links concerning unseen entities by employing a meta-learning framework and utilizing the meta-information provided by only few edges associated with each unseen entity. We construct three new datasets for TKG few-shot OOG link prediction, and we propose a model that mines the concept-aware information among entities. Experimental results show that our model achieves superior performance on all three datasets and our concept-aware modeling component demonstrates a strong effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源