论文标题

在开源项目问题跟踪系统中支持任务驱动的技能识别

Supporting the Task-driven Skill Identification in Open Source Project Issue Tracking Systems

论文作者

Santos, Fabio

论文摘要

选择适当的任务对于开源软件(OSS)的贡献者来说是具有挑战性的,主要针对那些首次贡献的人。因此,研究人员和OSS项目提出了各种策略来帮助新移民,包括标签任务。我们研究了开放问题策略的自动标签,以帮助贡献者挑选一项任务以贡献。我们将API域的问题标记为从用于解决问题的源代码中解析的API类别。我们计划从问题对话中添加社交网络分析指标,作为新的预测指标。通过确定技能,我们声称贡献者应选择更合适的任务。我们分析了访谈笔录和调查的开放式问题,以理解用于协助入职贡献者并用来解决问题的策略。我们应用定量研究来分析标签在实验中的相关性,并比较策略的相对重要性。我们还从OSS存储库中挖掘出了发行数据,以预测具有可比精度,召回和对ART的F量的API域标签。我们计划使用技能本体论来协助贡献者和任务之间的匹配过程。通过分析描述贡献者的技能和任务的本体论中匹配实例的置信度,我们可能会建议贡献问题。到目前为止,结果表明,组织问题(包括分配标签)被视为在OSS社区中各种角色的重要策略。 API域标签与经验丰富的从业者有关。预测的平均精度为75.5%。标记问题表示问题所涉及的技能。这些标签代表了与问题有关的源代码中可能的技能。通过调查这一研究主题,我们希望帮助新贡献者找到一项任务。

Selecting an appropriate task is challenging for contributors to Open Source Software (OSS), mainly for those who are contributing for the first time. Therefore, researchers and OSS projects have proposed various strategies to aid newcomers, including labeling tasks. We investigate the automatic labeling of open issues strategy to help the contributors to pick a task to contribute. We label the issues with API-domains--categories of APIs parsed from the source code used to solve the issues. We plan to add social network analysis metrics from the issues conversations as new predictors. By identifying the skills, we claim the contributor candidates should pick a task more suitable. We analyzed interview transcripts and the survey's open-ended questions to comprehend the strategies used to assist in onboarding contributors and used to pick up an issue. We applied quantitative studies to analyze the relevance of the labels in an experiment and compare the strategies' relative importance. We also mined issue data from OSS repositories to predict the API-domain labels with comparable precision, recall, and F-measure with the state-of-art. We plan to use a skill ontology to assist the matching process between contributors and tasks. By analyzing the confidence level of the matching instances in ontologies describing contributors' skills and tasks, we might recommend issues for contribution. So far, the results showed that organizing the issues--which includes assigning labels is seen as an essential strategy for diverse roles in OSS communities. The API-domain labels are relevant for experienced practitioners. The predictions have an average precision of 75.5%. Labeling the issues indicates the skills involved in an issue. The labels represent possible skills in the source code related to an issue. By investigating this research topic, we expect to assist the new contributors in finding a task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源