论文标题

与Hölder相的振荡积分

On oscillatory integrals with Hölder phases

论文作者

Leclerc, Gaétan

论文摘要

我们展示了一个女性Hölder地图家族,尽管不是绝对连续的,但它满足了Van der Corput引理的分形版本。结果是Sahlsten和Steven Arxiv的最新作品的直接结果:2009.01703,该作品基于一种强大的波尔加因定理,称为sumproduct现象估计。我们使用Arxiv启发的基本方法给出了基本简单的证明:1704.02909,以检查应用总生产现象所需的非浓度估计值。这种方法使我们能够对衰减率进行额外的控制。

We exhibit a family of autosimilar Hölder maps that satisfies a fractal version of the Van Der Corput Lemma, despite not being absolutely continuous. The result is a direct consequence of a recent work of Sahlsten and Steven arXiv:2009.01703, which is based on a powerful theorem of Bourgain known as a sum-product phenomenon estimate. We give a substantially simpler proof of this fact in our particular context, using an elementary method inspired from arXiv:1704.02909 to check the non-concentration estimates that are needed to apply the sum-product phenomenon. This method allows us to gain additional control over the decay rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源